

PRODUCT DATASHEET A4 STAINLESS STEEL MULTI-FIX SCREW

PRODUCT DETAILS	
Purpose:	Fixing timber battens, trunking, track and general components into concrete, masonry and timber
Head style:	5/16" (8mm) hexagonal (male) socket w/ flange
Material Grade:	Thread and Head - AISI 316/ A4, Drilling Point - SAE C1018 / C1022 (Hardened)
Coating:	≥ 5µm Electroplated Zinc (Passivated)

GENERAL PHYSICAL CHARACTERISTICS

Product Code	Size	Drill Point
A4HH6.3-32-GP	6.3mm x 32mm	Gash Point
A4HH6.3-45-GP	6.3mm x 45mm	Gash Point
A4HH6.3-57-GP	6.3mm x 57mm	Gash Point
A4HH6.3-70-GP	6.3mm x 70mm	Gash Point
A4HH6.3-82-GP	6.3mm x 82mm	Gash Point
A4HH6.3-100-GP	6.3mm x 100mm	Gash Point
A4HH6.3-125-GP	6.3mm x 125mm	Gash Point
A4HH6.3-140-GP	6.3mm x 140mm	Gash Point
A4HH6.3-160-GP	6.3mm x 160mm	Gash Point
A4HH6.3-180-GP	6.3mm x 180mm	Gash Point
A4HH6.3-200-GP	6.3mm x 200mm	Gash Point
A4HH6.3-250-GP	6.3mm x 250mm	Gash Point

TECHNICAL DATA

Ultimate pull out loading from steel									
Steel substrate (S275 JR mild steel)									
Major diameter Steel thickness Steel thickness Steel thickness									
6.3mm	0.7mm	1.0mm	1.2mm						
Force	1,000 N	2,000 N							
Characteristic pull out loading from timber									
Major diameter	Timber grade	Timber grade Embedment Load depth							
6.3mm	C16	25.0mm	3,000 N						
		35.0mm	3,700 N						
		1							

Characteristic/ Safe Loading: Withdrawal Resistance (Concrete and Masonry Substrates, γ = 3.0)

Embedment Depth (mm)	C35 Concrete (35N/mm2)	Aerated Concrete (7N/mm2)	Class B Engineering Brick (75 N/mm2)		
25.0	3,900 N	2,700 N	4,200 N		
35.0	5,800 N	3,900 N	5,700 N		

CHARACTERISTIC MECHCANICAL PROPERTIES

Property	Magnitude
Tensile Capacity, (F _{ult} ,R _k)	14,100 N
Shear Capacity, (V_{ult}, R_k)	9,700 N
Torsional Capacity, (τ_{ult}, R _k)	13,2 Nm

Concrete and masonry setting information								
Substrate type	Category	Data						
All	Nominal embedment depth	35.0mm						
Non cracked concrete (>30N/mm2)	Minimum base material thickness Minimum screw spacing Minimum edge distance	100.0mm 55.0mm 55.0mm						
Cracked concrete (>30N/ mm2)	Minimum base thickness Minimum screw spacing Minimum edge distance	100.0mm 40.0mm 55.0mm						

Influence of Compressive Strength on Withdrawal Resistance (Reduction Factors)

NI - I	D '''	Embedment Depth (mm)	Compressive Strength - Cube (EN 1992)							
Nominal Anchor Diameter	Drill Hole Diameter		C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	≥C50/60	
6.3mm	5.15mm	25.0	0.6	0.6 1.0 1.2		2	1.3			
		35.0	0.7	1.0	1.1	1.2	1.3	1.4	1.5	

Influence of edge distance on loadings (reduction factor)

			-		• •		•			
Percentage of stated minimum	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Reduction factor	N/A	N/A	N/A	N/A	N/A	0.75	0.80	0.85	0.90	1.00

NOTE: The results expressed in this document are determined from empirical testing. Specifiers, end-users and other third parties should make their own decision(s) on what safety factors to use relevant to their design(s)/ application(s). This document is provided, strictly: without prejudice, without recourse, without liability, non-assumpsit, no assured value, errors and omissions excepted, subject to change without notice and all rights reserved. ©Evolution Fasteners UK Ltd, 2021.