

Declaration of Performance DoP-11/0479-R-RB

1. Unique identification code of the product-type:

R-RB

The photo depicts an example of a product of the given type of goods

2. Intended use/es:

general type Expansion anchors

to be applied in Torque-controlled M6, M8, M10, M12, M16, M20 expansion anchors for both

non-cracked and cracked concrete

option / category

Loading material

subject to static or quasi-static

RAWL R-RB RAWLBOLT anchors types R-RBL and R-RBP in the sizes M6 to M20 are

the anchors made of galvanized steel which are placed into a drill hole and anchored

by torque-controlled expansion.

3. Manufacturer:

Rawlplug S.A.

ul. Kwidzyńska 6, 51-416 Wrocław, PL

www.rawlplug.com

4. System/s of AVCP:

System 1

5. European Assessment Document:

ETAG 001 Metal anchors for use in concrete. Part 1 Anchors in general and Part 2 Torque-controlled expansion anchors
Utilization category:

6. European Technical Assessment:

ETA-11/0479 edition of 2013-06-26

7. Technical Assessment Body:

Instytut Techniki Budowlanei

8. Notified body/ies:

1488 on the basis of:

- an assessment of the performance of the construction product carried out on the basis of testing (including sampling), calculation, tabulated values or descriptive documentation of the product
- initial inspection of the manufacturing plant and of factory production control
- continuing surveillance, assessment and evaluation of factory production control

issued a certificate 1488-CPD-0258/W

9. Declared performance/s:

Essential Characteristics:

Technical Specification	Basic	c requirements according to CPR	Remarks:		
ETA-11/0479	[1]	Mechanical resistance and stability	Declared values on the page 2		
,,	[4]	Operational safety	Such criteria as those significant for [1]		

IORAWLPLUG

Design method A, characteristic tension resistance

Design method A, thai atteristic tension resistante						
Anchor size	M8	M10	M12	M16	M20	
Steel failure						
Characteristic resistance N _{Rk,s} [kN]	29,3	46,4	57,4	125,6	196,0	
Partial safety factor γ _{Ms} 1)			1,5			
Pull-out failure						
Characteristic resistance in non-cracked concrete C20/25 – C 50/60 NRk,p [kN]	9	12	16	35	40	
Partial safety factor γ _{Mp} 1)			2,1 ²⁾			
Concrete cone failure						
Effective anchoring depth hef [mm]	60	70	80	100	125	
Spacing S _{cr,N} [mm]	180	210	240	300	375	
Distance from edge C _{cr,N} [mm]	90	105	120	150	188	
Splitting failure						
Spacing S _{cr,sp} [mm]	180	210	240	300	375	
Distance from edgei C _{cr,sp} [mm]	90	105	120	150	188	
Partial safety factor YMsc ¹⁾			2,1			

¹⁾ – if there are no domestic regulations

Dislocations caused by tension forces

Distocucions caused by cension forces						
Anchor size		M8	M10	M12	M16	M20
Tension force	N [kN]	3,06	4,08	6,80	11,90	13,61
Dislocation	δ _{NO} [mm]	0,08	0,27	0,11	0,15	0,36
	δ _N [mm]	1,00	1,00	1,00	1,00	1,00

 $^{^{2)}}$ – partial safety factor $\gamma_2 = 1.4$

IORAWLPLUG

Design method A, characteristic shear strength

Design method A, tharacteristic shear strength						
Anchor size	M8	M10	M12	M16	M20	
Steel failure without lever arm						
Characteristic resistance VRk,s [kN]	19,20	30,00	43,20	77,60	73,68	
Partial safety factor ɣMs¹³			1,25			
Steel failure with lever arm						
Characteristic flexural resistance M° Rk,s [Nm]	45,04	87,97	152,01	365,97	728,54	
Partial safety factor yMs ⁽¹⁾			1,25			
Zniszczenie przez odłupanie						
Coefficient in equation (5.6) in ETAG 001 Attachment C, p. 5.2.3.3			2			
Partial safety factor ɣMcp ¹⁾			2,1²)			
Concrete edge failure						
Effective anchor length when shear loads are present lf [mm]	60	70	80	100	125	
Effective anchor diameter dnom [mm]	8	10	12	16	20	
Partial safety factor γ _{Mc} 1 ⁾	2,1					

¹⁾ – if there are no domestic regulations

Dislocations caused by shear forces

Districtions that by since you can						
	Anchor size	M8	M10	M12	M16	M20
Shear force	V [kN]	6,53	10,20	14,69	26,39	25,06
Dislocation	δvo [mm]	1,91	0,99	2,07	2,44	2,81
	δv _[mm]	2,86	1,49	3,11	3,66	4,21

 $^{^{2)}}$ – partial safety factor γ_2 = 1,0

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of manufacturer:

Sławomir Jagła Proxy of the Quality Management System Wrocław, 11.02.2015.

PEŁNOMOCNIK SYSTEMU ZARZĄDZANIA JAKOŚCIĄ

mgy Sławomir Jagła