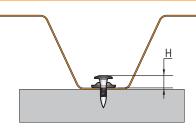

PAT SBR9 Pins

Eurocode 032650


Application limit

Designation according to European standard EN 10027-1

Ultimate tensile strength of base material (N/mm²)

Fixing control

- ¬ H_{mini} = 5 mm and H_{maxi} = 7 mm for guaranteeing the recommended working loads within the application limits.
- ¬ Max sheet thickness : 2 sheets with max thickness of 1mm.

Description

For fixing metal cladding sheets to steel framework

Material properties

The SBR9 nails are composed of :

- Carbon steel shank

- Ultimate tensile strength : 2000 N/mm²
- Yield strength : 1600 N/mm²
- Electrogalvanised, Min zinc coating 7 µm

¬ Steel washer

- Min zinc coating 8 µm
- The washer is designed to give effective clamping force

Tools

P370 & P200

Recommended loads

The recommended loads given below are suitable for a resistance of base material higher than 400 $\rm N/mm^2$ and with a minimum thickness of 5mm.

Sheet thickness ⁽¹⁾ Fuk >	Design resistance [kN]		Recommended load [kN]	
390N/mm ² (S320GD)	Shear	Tensile	Shear	Tensile
	N _{Rd}	V _{Rd}	V _{Rec}	N _{Rec}
0.75 mm	2.5	2.2	1.7	1.4
1.00 mm	3.2	3.2	2.2	2.2
1.25 mm	4.0	4.7	2.6	3.1
1.50 mm	4.1	4.7	2.8	3.1
2.00 mm	4.3	4.7	2.9	3.1

 $\label{eq:Frec} \begin{aligned} & F_{rec} = F_{Rk} \ / \ 2.5 : \text{the recommended load is calculated from the characteristic load and a global safety factor equal to 2.5. \\ & \text{Recommended load is calculated with a safety factor γ_F = 1.5. \\ \ ^{(1)} \text{ For a sheet thickness equal to 2mm, it is possible to use 2 sheets of 1mm.} \end{aligned}$