



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# European Technical Assessment

ETA-20/0202 of 17 April 2020

English translation prepared by DIBt - Original version in German language

## **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

VJ Technology Injection system XPE440 for concrete

Bonded fastener for use in concrete

VJ Technology Ltd.
Brunswick Road; Cobbs Wood Ind. Estate
ASHFORD KENT TN23 1EN .
GROSSBRITANNIEN

Plant 1, Germany

40 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601



## European Technical Assessment ETA-20/0202

Page 2 of 40 | 17 April 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



## **European Technical Assessment** ETA-20/0202

Page 3 of 40 | 17 April 2020

English translation prepared by DIBt

## **Specific Part**

#### 1 Technical description of the product

The "VJ Technology Injection System XPE440 for concrete" is a bonded anchor consisting of a cartridge with injection XPE440 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of  $\varnothing$  8 to  $\varnothing$  32 mm or an internal threaded anchor rod IT-M6 to IT-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

#### 2 Specification of the intended use in accordance with the applicable European **Assessment Document**

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                | Performance                                 |  |  |  |
|---------------------------------------------------------|---------------------------------------------|--|--|--|
| Characteristic resistance to tension load               | See Annex                                   |  |  |  |
| (static and quasi-static loading)                       | B2, C 1 to C 5, C 7 to C 9,<br>C 11 to C 13 |  |  |  |
| Characteristic resistance to shear load                 | See Annex                                   |  |  |  |
| (static and quasi-static loading)                       | C 1, C 6, C 10, C 14                        |  |  |  |
| Displacements under short-term and long-term loading    | See Annex                                   |  |  |  |
|                                                         | C 15 to C 17                                |  |  |  |
| Characteristic resistance and displacements for seismic | See Annex                                   |  |  |  |
| performance categories C1 and C2                        | C 18 to C 23                                |  |  |  |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

Z24194.20 8.06.01-19/20



# **European Technical Assessment ETA-20/0202**

Page 4 of 40 | 17 April 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

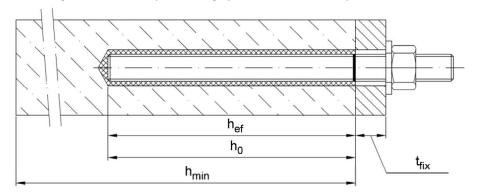
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

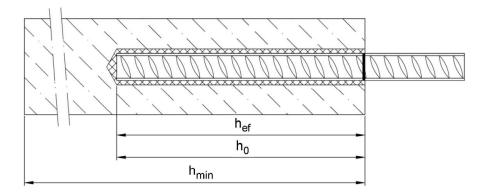
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

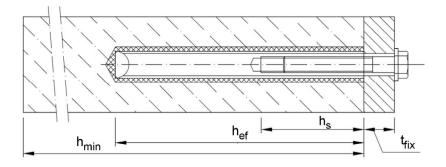
Issued in Berlin on 17 April 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt.
Baderschneider




## Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)



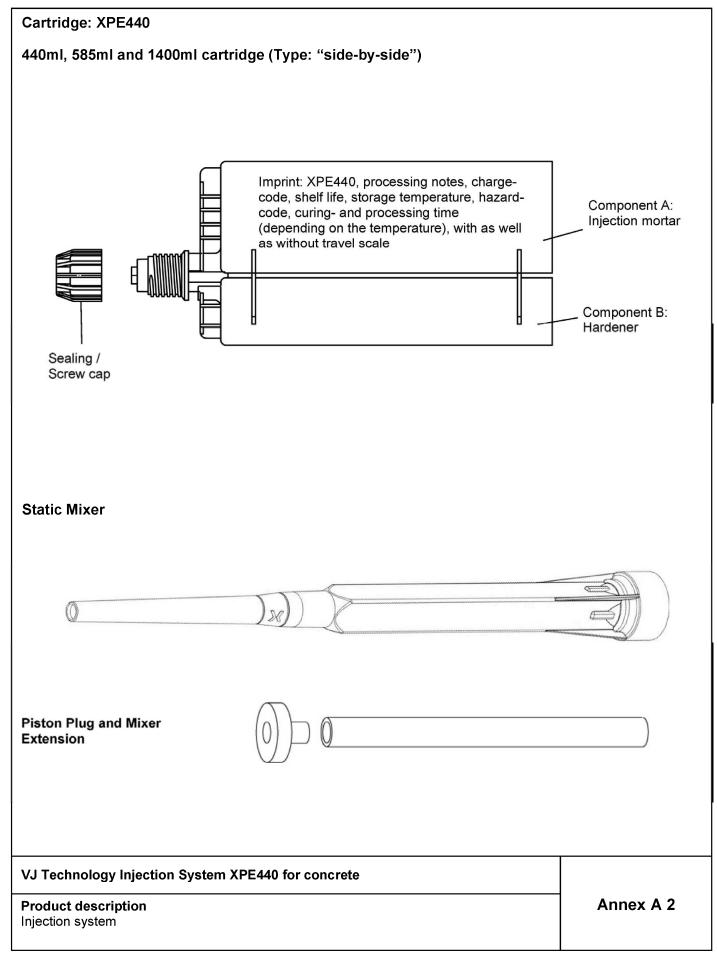
# Installation reinforcing bar Ø8 up to Ø32



## Installation internal threaded anchor rod IT-M6 up to IT-M20

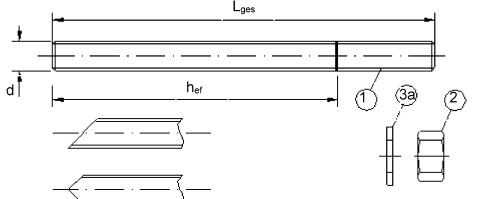


 $t_{fix}$  = thickness of fixture


h<sub>ef</sub> = effective anchorage depth

 $h_0$  = depth of drill hole

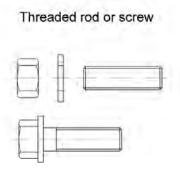
 $h_{min}$  = minimum thickness of member

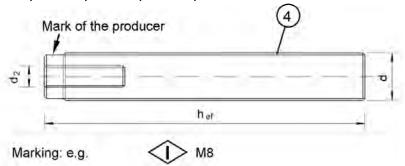

| VJ Technology Injection System XPE440 for concrete |           |
|----------------------------------------------------|-----------|
| Product description Installed condition            | Annex A 1 |










Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

## Internal threaded anchor rod IT-M6, IT-M8, IT-M10, IT-M12, IT-M16, IT-M20





Marking Internal thread

Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

# Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture







## VJ Technology Injection System XPE440 for concrete

## **Product description**

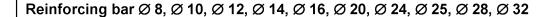
Threaded rod, internal threaded rod and filling washer

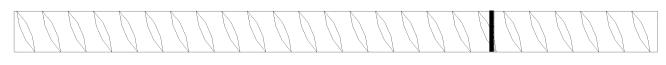
Annex A 3



| ıd                        | ble A1: Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ials                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parl                      | Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Material                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acc. to EN 10087:1998<br>5 µm     acc. to EN ISC                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| h                         | ot-dip galvanised ≥ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | io μm acc. to EN ISC                                                                                                                                                                                                                                                                                   | 146                                                                                             | 1:2009 and EN ISO 10684:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2004+AC:2009 or                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| S                         | nerardized ≥ △                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 μm acc. to EN ISC                                                                                                                                                                                                                                                                                   | 1766                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tax                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Property class                                                                                                                                                                                                                                                                                         |                                                                                                 | Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                       | Elongation at                                                                                                                                                                    |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        | 4.0                                                                                             | ultimate tensile strength<br>f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yield strength                                                                                                                                                                                                                                                                                                                                                                                             | fracture<br>A <sub>5</sub> > 8%                                                                                                                                                  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |                                                                                                 | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f <sub>yk</sub> = 240 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |
| 1                         | Threaded rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acc. to                                                                                                                                                                                                                                                                                                |                                                                                                 | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>yk</sub> = 320 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                    | A <sub>5</sub> > 8%                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EN ISO 898-1:2013                                                                                                                                                                                                                                                                                      |                                                                                                 | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>yk</sub> = 300 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                    | A <sub>5</sub> > 8%                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |                                                                                                 | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>yk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                    | A <sub>5</sub> > 8%                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |                                                                                                 | f <sub>uk</sub> = 800 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f <sub>yk</sub> = 640 N/mm²                                                                                                                                                                                                                                                                                                                                                                                | $A_5 \ge 12\%^{3}$                                                                                                                                                               |
| _                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acc. to                                                                                                                                                                                                                                                                                                | 4                                                                                               | for anchor rod class 4.6 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| 2                         | Hexagon nut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EN ISO 898-2:2012                                                                                                                                                                                                                                                                                      | 5                                                                                               | for anchor rod class 5.6 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r 5.8                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ctool zine plated ha                                                                                                                                                                                                                                                                                   | 8<br>2+ din                                                                                     | for anchor rod class 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| 3а                        | Washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                 | galvanised or sherardized<br>EN ISO 7089:2000, EN ISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7093:2000 or EN ISO                                                                                                                                                                                                                                                                                                                                                                                        | 7094:2000)                                                                                                                                                                       |
| 3b                        | Filling washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>                                                                                                                                                                                                                                                                                            |                                                                                                 | galvanised or sherardized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Property class                                                                                                                                                                                                                                                                                         |                                                                                                 | Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                       | Elongation at                                                                                                                                                                    |
|                           | Internal threaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                 | ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | yield strength                                                                                                                                                                                                                                                                                                                                                                                             | fracture                                                                                                                                                                         |
| 4                         | michial illicaucu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| 4                         | anchor rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acc. to                                                                                                                                                                                                                                                                                                | 5.8                                                                                             | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>yk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                    | A <sub>5</sub> > 8%                                                                                                                                                              |
| 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acc. to<br>EN ISO 898-1:2013                                                                                                                                                                                                                                                                           |                                                                                                 | f <sub>uk</sub> = 500 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| Stai                      | anchor rod nless steel A2 (Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EN ISO 898-1:2013                                                                                                                                                                                                                                                                                      | 8.8<br>1.431                                                                                    | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2014)                                                                                                                                                                                                                                                                                                   | A <sub>5</sub> > 8%                                                                                                                                                              |
| Stai<br>Stai              | anchor rod<br>nless steel A2 (Mate<br>nless steel A4 (Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EN ISO 898-1:2013<br>rrial 1.4301 / 1.4307 / 1<br>rrial 1.4401 / 1.4404 / 1                                                                                                                                                                                                                            | 8.8<br>1.431<br>1.457                                                                           | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2014)<br>o EN 10088-1:2014)                                                                                                                                                                                                                                                                             | A <sub>5</sub> > 8%                                                                                                                                                              |
| Stai<br>Stai              | anchor rod<br>nless steel A2 (Mate<br>nless steel A4 (Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EN ISO 898-1:2013<br>rrial 1.4301 / 1.4307 / 1<br>rrial 1.4401 / 1.4404 / 1                                                                                                                                                                                                                            | 8.8<br>1.431<br>1.457                                                                           | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2014)<br>o EN 10088-1:2014)<br>-1: 2014)                                                                                                                                                                                                                                                                | A <sub>5</sub> > 8%<br>A <sub>5</sub> > 8%                                                                                                                                       |
| Stai<br>Stai              | anchor rod<br>nless steel A2 (Mate<br>nless steel A4 (Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EN ISO 898-1:2013<br>rrial 1.4301 / 1.4307 / 1<br>rrial 1.4401 / 1.4404 / 1                                                                                                                                                                                                                            | 8.8<br>1.431<br>1.457                                                                           | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088<br>Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2014)<br>o EN 10088-1:2014)<br>-1: 2014)<br>Characteristic steel                                                                                                                                                                                                                                        | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at                                                                                                                                            |
| Stai<br>Stai<br>Higl      | anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class                                                                                                                                                                                         | 8.8<br>1.431<br>1.457<br>529 o                                                                  | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088<br>Characteristic steel<br>ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength                                                                                                                                                                                                                                       | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture                                                                                                                                   |
| Stai<br>Stai              | anchor rod<br>nless steel A2 (Mate<br>nless steel A4 (Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to                                                                                                                                                                                | 8.8<br>1.431<br>1.457<br>529 or                                                                 | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                                                                                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$                                                                                                                     |
| itai<br>itai<br>ligi      | anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class                                                                                                                                                                                         | 8.8<br>1.431<br>1.457<br>529 or<br>50<br>70                                                     | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup>                                                                                                                                                      | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$                                                                                                      |
| Stai<br>Stai<br>Iigl      | anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009                                                                                                                                                           | 8.8<br>1.431<br>1.457<br>529 or<br>50<br>70<br>80                                               | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                                                                                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$                                                                                                                     |
| Stai<br>Stai<br>Higl      | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan  Threaded rod <sup>1)4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to                                                                                                                                                  | 8.8<br>1.431<br>1.457<br>529 or<br>50<br>70<br>80<br>50                                         | $\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \end{aligned}$                                                                                                                                                                                                                                                                                                                                | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup>                                                                                                                                                      | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$                                                                                                      |
| Stai<br>Stai<br>Higl      | anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506-                                                                                                                                    | 8.8<br>1.431<br>1.457<br>529 or<br>50<br>70<br>80<br>50<br>70                                   | $\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{aligned}$                                                                                                                                                                                                                                                                                             | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup>                                                                                                                                                      | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$                                                                                                      |
| Stai<br>Stai<br>Higl      | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan  Threaded rod <sup>1)4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009                                                                                                                             | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>50<br>70<br>80                                   | $\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. to } 1 / 1.4362 \text{ or } 1.4578, \text{ acc. to } 1.4565, \text{ acc. to } EN 10088 \\ \text{Characteristic steel ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \end{split}$                                                                                                                                                                                                                                                                              | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup>                                                                                                                                                      | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$ <sup>3)</sup> $A_5 \ge 12\%$ <sup>3)</sup>                                                           |
| Stai<br>Stai<br>High      | anchor rod  nless steel A2 (Material nless steel A4 (Material nless steel | EN ISO 898-1:2013  prial 1.4301 / 1.4307 / 1  prial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /                                                                                                    | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>71.43                                | $\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{aligned}$                                                                                                                                                                                                                                                                                             | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup>                                                                                                              | A <sub>5</sub> > 8%  A <sub>5</sub> > 8%  Elongation at fracture  A <sub>5</sub> ≥ 8%  A <sub>5</sub> ≥ 12% <sup>3)</sup> A <sub>5</sub> ≥ 12% <sup>3)</sup>                     |
| Stai<br>Stai<br>High      | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan  Threaded rod <sup>1)4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /  A4: Material 1.4401 /  HCR: Material 1.452                                                          | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>7 1.43<br>9 or 1                     | $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $1 / 1.4567 \text{ or } 1.4541, \text{ acc. t}$ $1 / 1.4362 \text{ or } 1.4578, \text{ acc. t}$ $1 / 1.4565, \text{ acc. to EN } 10088$ $Characteristic steel$ $ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $f_{or anchor rod class } 50$ $for anchor rod class } 50$ $for anchor rod class } 80$ $107 / 1.4311 / 1.4567 \text{ or } 1.4$ $1.4565, \text{ acc. to EN } 10088-1$                                                                                                                                                                                                                                                         | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup>                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 1:2014 1:2014                                                          |
| Stai<br>Stai<br>High<br>1 | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan)  Threaded rod <sup>1)4)</sup> Hexagon nut <sup>1)4)</sup> Washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /  A4: Material 1.4401 /  HCR: Material 1.452 (e.g.: EN ISO 887:20                                     | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>7 1.43<br>7 1.44<br>9 or 1           | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 to 7 / 1.4311 / 1.4567 or 1.4 to 4 / 1.4571 / 1.4362 or 1.4 to 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC                                                                                                                                                                                                                                                                   | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup>                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 1:2014 1:2014                                           |
| Stai<br>Stai<br>High      | anchor rod  nless steel A2 (Material nless steel A4 (Material nless steel | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /  A4: Material 1.4401 /  HCR: Material 1.452 (e.g.: EN ISO 887:20                                     | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>7 1.43<br>7 1.44<br>9 or 1           | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  07 / 1.4311 / 1.4567 or 1.4  1.4565, acc. to EN 10088-1  EN ISO 7089:2000, EN ISC orrosion resistance steel                                                                                                                                                                                                                                                                       | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup> 541, acc. to EN 10088-578, acc. to EN 10088-: 2014 0 7093:2000 or EN ISO                                     | A <sub>5</sub> > 8%  A <sub>5</sub> > 8%  Elongation at fracture  A <sub>5</sub> $\geq$ 8%  A <sub>5</sub> $\geq$ 12% 3)  A <sub>5</sub> $\geq$ 12% 3)  1:2014 1:2014 7094:2000) |
| Stai<br>Stai<br>Higl      | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan)  Threaded rod <sup>1)4)</sup> Hexagon nut <sup>1)4)</sup> Washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /  A4: Material 1.4401 /  HCR: Material 1.452 (e.g.: EN ISO 887:20                                     | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>7 1.43<br>7 1.44<br>9 or 1           | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 for 1.4311 / 1.4567 or 1.4 (1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup> 541, acc. to EN 10088-578, acc. to EN 10088-: 2014 0 7093:2000 or EN ISO  Characteristic steel                | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 1:2014 1:2014 7094:2000)  Elongation at                                |
| Stai<br>Stai<br>Higl      | anchor rod  nless steel A2 (Material nless steel A4 (Material nless steel A4)  Threaded rod 1)4)  Hexagon nut 1)4)  Washer  Filling washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EN ISO 898-1:2013  Irial 1.4301 / 1.4307 / 1  Irial 1.4401 / 1.4404 / 1  Ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /  A4: Material 1.4401 /  HCR: Material 1.4401 /  HCR: Material 1.452  (e.g.: EN ISO 887:20  Stainless steel A4, H  Property class | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>7 1.43<br>7 1.44<br>9 or 1<br>006, E | $\begin{aligned} &f_{uk} = 500 \text{ N/mm}^2 \\ &f_{uk} = 800 \text{ N/mm}^2 \\ &1 / 1.4567 \text{ or } 1.4541, \text{ acc. tr.} \\ &1 / 1.4362 \text{ or } 1.4578, \text{ acc. tr.} \\ &1 / 1.4365, \text{ acc. to EN } 10088 \\ &Characteristic steel \\ &ultimate tensile strength \\ &f_{uk} = 500 \text{ N/mm}^2 \\ &f_{uk} = 700 \text{ N/mm}^2 \\ &f_{uk} = 800 \text{ N/mm}^2 \\ &for \text{ anchor rod class } 50 \\ &for \text{ anchor rod class } 50 \\ &for \text{ anchor rod class } 80 \\ &107 / 1.4311 / 1.4567 \text{ or } 1.4 \\ &1.4565, \text{ acc. to EN } 10088-1 \\ &EN \text{ ISO } 7089:2000, \text{ EN } \text{ ISO } \\ &corrosion \text{ resistance steel} \\ &Characteristic \text{ steel} \\ &ultimate \text{ tensile strength} \end{aligned}$ | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup> 541, acc. to EN 10088-578, acc. to EN 10088-: 2014  7093:2000 or EN ISO  Characteristic steel yield strength | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 1:2014 1:2014 7:094:2000)  Elongation at fracture                      |
| Stai<br>Stai<br>Higl      | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan)  Threaded rod <sup>1)4)</sup> Hexagon nut <sup>1)4)</sup> Washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN ISO 898-1:2013  rial 1.4301 / 1.4307 / 1  rial 1.4401 / 1.4404 / 1  ce steel (Material 1.45  Property class  acc. to  EN ISO 3506- 1:2009  acc. to  EN ISO 3506- 1:2009  A2: Material 1.4301 /  A4: Material 1.4401 /  HCR: Material 1.452 (e.g.: EN ISO 887:20  Stainless steel A4, H              | 8.8<br>1.431<br>1.457<br>529 or<br>70<br>80<br>70<br>80<br>7 1.43<br>7 1.44<br>9 or 1<br>006, E | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 for 1.4311 / 1.4567 or 1.4 (1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)  Characteristic steel yield strength f <sub>yk</sub> = 210 N/mm <sup>2</sup> f <sub>yk</sub> = 450 N/mm <sup>2</sup> f <sub>yk</sub> = 600 N/mm <sup>2</sup> 541, acc. to EN 10088-578, acc. to EN 10088-: 2014 0 7093:2000 or EN ISO  Characteristic steel                | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 1:2014 1:2014 7:094:2000)                                              |

<sup>1)</sup> Property class 70 or 80 for anchor rods up to M24 and Internal threaded anchor rods up to IT-M16,


<sup>&</sup>lt;sup>4)</sup> Property class 80 only for stainless steel A4 and HCR


| VJ Technology Injection System XPE440 for concrete                   |           |
|----------------------------------------------------------------------|-----------|
| Product description Materials threaded rod and internal threaded rod | Annex A 4 |

<sup>&</sup>lt;sup>2)</sup> for IT-M20 only property class 50

 $<sup>^{3)}\,</sup>A_5 > 8\%$  fracture elongation if  $\underline{no}$  requirement for performance category C2 exists









- Minimum value of related rip area f<sub>R,min</sub> according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
   (d: Nominal diameter of the bar; h: Rip height of the bar)

## Table A2: Materials

| Part  | Designation                         | Material                                                                                                                         |
|-------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Reinf | orcing bars                         |                                                                                                                                  |
| 1     | EN  1992-1-1-2004+4(`-2010 Anney (` | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |

VJ Technology Injection System XPE440 for concrete

Product description
Materials reinforcing bar

Annex A 5



| Specifications of intended use                                                                    |                                                                                                                                                                                                 |                           |                                                  |                                                  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|
| Anchorages subject to (for a s                                                                    | ervice life of 50 ye                                                                                                                                                                            | ars):                     |                                                  |                                                  |  |  |  |  |  |  |
|                                                                                                   | Static and qua                                                                                                                                                                                  | si-static loads           | Seismic action for<br>Performance<br>Category C1 | Seismic action for<br>Performance<br>Category C2 |  |  |  |  |  |  |
| Base material                                                                                     | Non-cracked concrete                                                                                                                                                                            | cracked<br>concrete       | Cracked and non-                                 | -cracked concrete                                |  |  |  |  |  |  |
| Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD) | M8 to<br>Ø8 to<br>IT-M6 to                                                                                                                                                                      | Ø32,                      | M8 to M30,<br>Ø8 to Ø32                          | M12 to M24                                       |  |  |  |  |  |  |
| Diamond drilling (DD)                                                                             | M8 to M30,<br>Ø8 to Ø32,<br>IT-M6 to IT-M20                                                                                                                                                     | Ø8 to Ø32, No performance |                                                  | No performance<br>assessed                       |  |  |  |  |  |  |
| Temperature Range:                                                                                | I: - 40 °C to +40 °C  (max long term temperature +24 °C and max short term temperature +40 °C)  II: - 40 °C to +72 °C  (max long term temperature +50 °C and max short term temperature +72 °C) |                           |                                                  |                                                  |  |  |  |  |  |  |

## Anchorages subject to (for a service life of 100 years):

|                                                                                                   | Static and qua                                  | si-static loads     | Seismic action for<br>Performance<br>Category C1 | Seismic action for<br>Performance<br>Category C2 |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|--------------------------------------------------|--------------------------------------------------|--|--|
| Base material                                                                                     | Non-cracked concrete                            | cracked<br>concrete | Cracked and non-cracked concrete                 |                                                  |  |  |
| Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD) | M8 to<br>Ø8 to<br>IT-M6 to                      | Ø32,                | M8 to M30,<br>Ø8 to Ø32                          | M12 to M24                                       |  |  |
| Diamond drilling (DD)                                                                             | No performance assessed No performance assessed |                     | No performance assessed                          | No performance<br>assessed                       |  |  |
| Temperature Range:                                                                                | (max long term te                               |                     | °C to +40 °C<br>and max short term te            | emperature +40 °C)                               |  |  |

## Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

## Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
  - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
  - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
  - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

| VJ Technology Injection System XPE440 for concrete |           |
|----------------------------------------------------|-----------|
| Intended Use<br>Specifications                     | Annex B 1 |

# Page 11 of European Technical Assessment ETA-20/0202 of 17 April 2020

English translation prepared by DIBt



## Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

## Installation:

- · Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB), compressed air (CD) or diamond drill mode (DD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

| VJ Technology Injection System XPE440 for concrete |           |
|----------------------------------------------------|-----------|
| Intended Use<br>Specifications                     | Annex B 2 |



| Table B1: Ir                  | Table B1: Installation parameters for threaded rod |                            |      |     |                                 |                  |                                   |     |     |     |     |
|-------------------------------|----------------------------------------------------|----------------------------|------|-----|---------------------------------|------------------|-----------------------------------|-----|-----|-----|-----|
| Anchor size                   |                                                    | M8                         | M10  | M12 | M16                             | M20              | M24                               | M27 | M30 |     |     |
| Diameter of elemen            | t                                                  | d = d <sub>nom</sub>       | [mm] | 8   | 10                              | 12               | 16                                | 20  | 24  | 27  | 30  |
| Nominal drill hole di         | ameter                                             | d <sub>0</sub>             | [mm] | 10  | 12                              | 14               | 18                                | 22  | 28  | 30  | 35  |
| Effective embedmer            | Effective and advantage of                         |                            | [mm] | 60  | 60                              | 70               | 80                                | 90  | 96  | 108 | 120 |
| Effective embedmer            | it deptii                                          | h <sub>ef,max</sub>        | [mm] | 160 | 200                             | 240              | 320                               | 400 | 480 | 540 | 600 |
| Diameter of                   | Prepositioned ins                                  |                            | [mm] | 9   | 12                              | 14               | 18                                | 22  | 26  | 30  | 33  |
| clearance hole in the fixture | Push through i                                     | nstallation d <sub>f</sub> | [mm] | 12  | 14                              | 16               | 20                                | 24  | 30  | 33  | 40  |
| Maximum torque mo             | ment                                               | T <sub>inst</sub> ≤        | [Nm] | 10  | 20                              | 40 <sup>1)</sup> | 60                                | 100 | 170 | 250 | 300 |
| Minimum thickness             | of member                                          | h <sub>min</sub>           | [mm] |     | <sub>f</sub> + 30 m<br>: 100 mr |                  | h <sub>ef</sub> + 2d <sub>0</sub> |     |     |     |     |
| Minimum spacing               |                                                    | s <sub>min</sub>           | [mm] | 40  | 50                              | 60               | 75                                | 95  | 115 | 125 | 140 |
| Minimum edge dista            | ince                                               | c <sub>min</sub>           | [mm] | 35  | 40                              | 45               | 50                                | 60  | 65  | 75  | 80  |

<sup>1)</sup> Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

## Table B2: Installation parameters for rebar

|                             |                         | Ø 8 <sup>1)</sup> |                                     |                    |      |         |      |      |                 |                   |      |      |      |
|-----------------------------|-------------------------|-------------------|-------------------------------------|--------------------|------|---------|------|------|-----------------|-------------------|------|------|------|
| Anchor size                 |                         |                   |                                     | Ø 10 <sup>1)</sup> | Ø 12 | 21)   9 | Ø 14 | Ø 16 | Ø 20            | Ø 24              | Ø 25 | Ø 28 | Ø 32 |
| Diameter of element         | d =<br>d <sub>nom</sub> | [mm]              | 8                                   | 10                 | 12   |         | 14   | 16   | 20              | 24                | 25   | 28   | 32   |
| Nominal drill hole diameter | $d_0$                   | [mm]              | 10 12                               | 12 14              | 14 1 | 6       | 18   | 20   | 25              | 32                | 32   | 35   | 40   |
| Effective embedment depth   | h <sub>ef,min</sub>     | [mm]              | 60                                  | 60                 | 70   |         | 75   | 80   | 90              | 96                | 100  | 112  | 128  |
| Effective embedment depth   | $h_{ef,max}$            | [mm]              | 160                                 | 200                | 240  | )       | 280  | 320  | 400             | 480               | 500  | 560  | 640  |
| Minimum thickness of member | h <sub>min</sub>        | [mm]              | h <sub>ef</sub> + 30 mm ≥<br>100 mm |                    | ≥    |         |      |      | h <sub>et</sub> | + 2d <sub>0</sub> |      |      |      |
| Minimum spacing             | s <sub>min</sub>        | [mm]              | 40                                  | 40 50              |      |         | 70   | 75   | 95              | 120               | 120  | 130  | 150  |
| Minimum edge distance       | $c_{min}$               | [mm]              | 35                                  | 40                 | 45   |         | 50   | 50   | 60              | 70                | 70   | 75   | 85   |

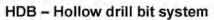
<sup>1)</sup> both nominal drill hole diameter can be used

## Table B3: Installation parameters for Internal threaded anchor rod

| Anchor size                                |                      |      | IT-M6 | IT-M8         | IT-M10                            | IT-M12 | IT-M16 | IT-M20 |  |
|--------------------------------------------|----------------------|------|-------|---------------|-----------------------------------|--------|--------|--------|--|
| Internal diameter of anchor rod            | d <sub>2</sub>       | [mm] | 6     | 8             | 10                                | 12     | 16     | 20     |  |
| Outer diameter of anchor rod <sup>1)</sup> | d = d <sub>nom</sub> | [mm] | 10    | 12            | 16                                | 20     | 24     | 30     |  |
| Nominal drill hole diameter                | d <sub>0</sub>       | [mm] | 12    | 14            | 18                                | 22     | 28     | 35     |  |
| Cffeeting ambadment death                  | h <sub>ef,min</sub>  | [mm] | 60    | 70            | 80                                | 90     | 96     | 120    |  |
| Effective embedment depth                  | h <sub>ef,max</sub>  |      | 200   | 240           | 320                               | 400    | 480    | 600    |  |
| Diameter of clearance hole in the fixture  | d <sub>f</sub> ≤     | [mm] | 7     | 9             | 12                                | 14     | 18     | 22     |  |
| Maximum torque moment                      | T <sub>inst</sub> ≤  | [Nm] | 10    | 10            | 20                                | 40     | 60     | 100    |  |
| Thread engagement length min/max           | I <sub>IG</sub>      | [mm] | 8/20  | 8/20          | 10/25                             | 12/30  | 16/32  | 20/40  |  |
| Minimum thickness of member                | h <sub>min</sub>     | [mm] |       | 30 mm<br>0 mm | h <sub>ef</sub> + 2d <sub>0</sub> |        |        |        |  |
| Minimum spacing                            | s <sub>min</sub>     | [mm] | 50    | 60            | 75                                | 95     | 115    | 140    |  |
| Minimum edge distance                      | c <sub>min</sub>     | [mm] | 40    | 45            | 50                                | 60     | 65     | 80     |  |

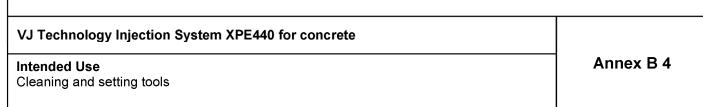
<sup>1)</sup> With metric threads according to EN 1993-1-8:2005+AC:2009

# VJ Technology Injection System XPE440 for concrete Intended Use Installation parameters Annex B 3




| Table B4        | : Parar | neter clea                         | ning and s                                            |      |                         | S                                       |                |                   |                                            |     |
|-----------------|---------|------------------------------------|-------------------------------------------------------|------|-------------------------|-----------------------------------------|----------------|-------------------|--------------------------------------------|-----|
| Threaded<br>Rod | Rebar   | Internal<br>threaded<br>anchor rod | d <sub>0</sub><br>Drill bit - Ø<br>HD, HDB, CD,<br>DD | I    | l <sub>b</sub><br>h - Ø | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug |                   | nstallation direction an<br>of piston plug |     |
| [mm]            | [mm]    | [mm]                               | [mm]                                                  |      | [mm]                    | [mm]                                    |                | 1                 | <b></b>                                    | 1   |
| M8              | 8       |                                    | 10                                                    | PP10 | 11,5                    | 10,5                                    |                |                   |                                            |     |
| M10             | 8 / 10  | IT-M6                              | 12                                                    | PP12 | 13,5                    | 12,5                                    |                | No olua           | roquirod                                   |     |
| M12             | 10 / 12 | IT-M8                              | 14                                                    | PP14 | 15,5                    | 14,5                                    |                | No plug           | required                                   |     |
|                 | 12      |                                    | 16                                                    | PP16 | 17,5                    | 16,5                                    |                |                   |                                            |     |
| M16             | 14      | IT-M10                             | 18                                                    | PP18 | 20,0                    | 18,5                                    | BR18           |                   |                                            |     |
|                 | 16      |                                    | 20                                                    | PP20 | 22,0                    | 20,5                                    | BR20           |                   |                                            |     |
| M20             |         | IT-M12                             | 22                                                    | PP22 | 24,0                    | 22,5                                    | BR22           |                   |                                            |     |
|                 | 20      |                                    | 25                                                    | PP25 | 27,0                    | 25,5                                    | BR25           | h <sub>ef</sub> > | h <sub>ef</sub> >                          |     |
| M24             |         | IT-M16                             | 28                                                    | PP28 | 30,0                    | 28,5                                    | BR28           | 250 mm            | 250 mm                                     | all |
| M27             |         |                                    | 30                                                    | PP30 | 31,8                    | 30,5                                    | BR30           | 230 111111        | 230 111111                                 |     |
|                 | 24 / 25 |                                    | 32                                                    | PP32 | 34,0                    | 32,5                                    | BR32           | _                 |                                            |     |
| M30             | 28      | IT-M20                             | 35                                                    | PP35 | 37,0                    | 35,5                                    | BR35           | 1                 |                                            |     |
|                 | 32      |                                    | 40                                                    | PP40 | 43,5                    | 40,5                                    | BR40           |                   |                                            |     |

## CAC - Rec. compressed air tool (min 6 bar)


Drill bit diameter (d<sub>0</sub>): all diameters





Drill bit diameter (d<sub>0</sub>): all diameters

The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa <u>and</u> flow rate of minimum 150 m³/h (42 l/s).





## Installation instructions

## Drilling of the bore hole (HD, HDB, CD)



Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). Proceed with Step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.



10 Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3. In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

## CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete



Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.



Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B4) a minimum of two times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.



Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

# VJ Technology Injection System XPE440 for concrete

# Intended Use Installation instructions

Annex B 5



#### Installation instructions

## Drilling of the bore hole (DD)



Diamond drilling (DD)

Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). Proceed with Step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.

## SPCAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked concrete



Attention! Standing water in the bore hole must be removed before cleaning.

2a Rinsing with water until clear water comes out.



Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B4) a minimum of two times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Rinsing again with water until clear water comes out.



Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.



Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B4) a minimum of two times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



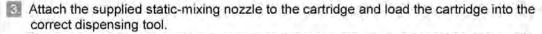
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

## VJ Technology Injection System XPE440 for concrete

# Intended Use

Installation instructions


Annex B 6

724486 20 8 06 01-19/20



## Installation instructions (continuation)





For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.



Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.



Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.



- Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
  - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm and embedment depth h<sub>ef</sub> > 250mm
  - Overhead assembly (vertical upwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm



B Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.



After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).



Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).



After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

## VJ Technology Injection System XPE440 for concrete

## **Intended Use**

Installation instructions (continuation)

Annex B 7



| Table B5: | Ma   | aximum w | orking time and minir   | num curing time                     |                                     |  |  |  |
|-----------|------|----------|-------------------------|-------------------------------------|-------------------------------------|--|--|--|
| Concrete  | temp | erature  | Gelling<br>working time | Minimum curing time in dry concrete | Minimum curing time in wet concrete |  |  |  |
| + 5 °C    | to   | + 9 °C   | 80 min                  | 48 h                                | 96 h                                |  |  |  |
| + 10 °C   | to   | + 14 °C  | 60 min                  | 28 h                                | 56 h                                |  |  |  |
| + 15 °C   | to   | + 19 °C  | 40 min                  | 18 h                                | 36 h                                |  |  |  |
| + 20 °C   | to   | + 24 °C  | 30 min                  | 12 h                                | 24 h                                |  |  |  |
| + 25 °C   | to   | + 34 °C  | 12 min                  | 9 h                                 | 18 h                                |  |  |  |
| + 35 °C   | to   | + 39 °C  | 8 min                   | 6 h                                 | 12 h                                |  |  |  |
| +4        | 0 °C |          | 8 min                   | 4 h                                 | 8 h                                 |  |  |  |
| Cartridge | temp | erature  | +5°C to +40°C           |                                     |                                     |  |  |  |

| VJ Technology Injection System XPE440 for concrete |           |
|----------------------------------------------------|-----------|
| Intended Use Curing time                           | Annex B 8 |



| Т                                                                 | able C1: Characteristic values for resistance of threaded |                                | l tens | sion re | sistan  | ce an | d stee | el she | ar  |      |      |
|-------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|--------|---------|---------|-------|--------|--------|-----|------|------|
| Siz                                                               | ze                                                        |                                |        | M8      | M10     | M12   | M16    | M20    | M24 | M27  | M30  |
| Cr                                                                | oss section area                                          | A <sub>s</sub>                 | [mm²]  | 36,6    | 58      | 84,3  | 157    | 245    | 353 | 459  | 561  |
| Ch                                                                | aracteristic tension resistance, Steel failu              | re <sup>1)</sup>               |        | •       |         |       |        |        |     |      |      |
| Ste                                                               | eel, Property class 4.6 and 4.8                           | N <sub>Rk,s</sub>              | [kN]   | 15 (13) | 23 (21) | 34    | 63     | 98     | 141 | 184  | 224  |
| Ste                                                               | eel, Property class 5.6 and 5.8                           | $N_{Rk,s}$                     | [kN]   | 18 (17) | 29 (27) | 42    | 78     | 122    | 176 | 230  | 280  |
| Ste                                                               | eel, Property class 8.8                                   | N <sub>Rk,s</sub>              | [kN]   | 29 (27) | 46 (43) | 67    | 125    | 196    | 282 | 368  | 449  |
| Sta                                                               | ainless steel A2, A4 and HCR, class 50                    | $N_{Rk,s}$                     | [kN]   | 18      | 29      | 42    | 79     | 123    | 177 | 230  | 281  |
| Sta                                                               | ainless steel A2, A4 and HCR, class 70                    | N <sub>Rk,s</sub>              | [kN]   | 26      | 41      | 59    | 110    | 171    | 247 | -    | -    |
| Sta                                                               | ainless steel A4 and HCR, class 80                        | N <sub>Rk,s</sub>              | [kN]   | 29      | 46      | 67    | 126    | 196    | 282 | -    | -    |
| Ch                                                                | aracteristic tension resistance, Partial fac              | tor <sup>2)</sup>              |        |         |         |       |        |        |     |      |      |
| Ste                                                               | eel, Property class 4.6 and 5.6                           | $\gamma_{Ms,N}$                | [-]    |         |         |       | 2,0    | כ      |     |      |      |
| Ste                                                               | eel, Property class 4.8, 5.8 and 8.8                      | $\gamma_{Ms,N}$                | [-]    |         |         |       | 1,     | 5      |     |      |      |
| Sta                                                               | ainless steel A2, A4 and HCR, class 50                    | γ <sub>Ms,N</sub>              | [-]    |         |         |       | 2,8    | 6      |     |      |      |
| Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,N}$ [-] 1,87 |                                                           |                                |        |         |         |       |        |        |     |      |      |
| Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-]          |                                                           |                                |        |         |         | 1,6   | 3      |        |     |      |      |
| Ch                                                                | aracteristic shear resistance, Steel failure              |                                |        |         |         |       |        |        |     |      |      |
| _                                                                 | Steel, Property class 4.6 and 4.8                         | V <sup>0</sup> <sub>Rk,s</sub> | [kN]   | 9 (8)   | 14 (13) | 20    | 38     | 59     | 85  | 110  | 135  |
| arm                                                               | Steel, Property class 5.6 and 5.8                         | $V^0_{Rk,s}$                   | [kN]   | 11 (10) | 17 (16) | 25    | 47     | 74     | 106 | 138  | 168  |
| Without lever                                                     | Steel, Property class 8.8                                 | $V^0_{Rk,s}$                   | [kN]   | 15 (13) | 23 (21) | 34    | 63     | 98     | 141 | 184  | 224  |
| out                                                               | Stainless steel A2, A4 and HCR, class 50                  | $V^0_{Rk,s}$                   | [kN]   | 9       | 15      | 21    | 39     | 61     | 88  | 115  | 140  |
| Vitho                                                             | Stainless steel A2, A4 and HCR, class 70                  | $V^{0}_{Rk,s}$                 | [kN]   | 13      | 20      | 30    | 55     | 86     | 124 | -    | -    |
| >                                                                 | Stainless steel A4 and HCR, class 80                      | V <sup>0</sup> Rk,s            | [kN]   | 15      | 23      | 34    | 63     | 98     | 141 | -    | -    |
|                                                                   | Steel, Property class 4.6 and 4.8                         | M <sup>0</sup> Rk,s            | [Nm]   | 15 (13) | 30 (27) | 52    | 133    | 260    | 449 | 666  | 900  |
| arm                                                               | Steel, Property class 5.6 and 5.8                         | M <sup>0</sup> Rk,s            | [Nm]   | 19 (16) | 37 (33) | 65    | 166    | 324    | 560 | 833  | 1123 |
|                                                                   | Steel, Property class 8.8                                 | M <sup>0</sup> Rk,s            | [Nm]   | 30 (26) | 60 (53) | 105   | 266    | 519    | 896 | 1333 | 1797 |
| Vith lever                                                        | Stainless steel A2, A4 and HCR, class 50                  | M <sup>0</sup> Rk.s            | [Nm]   | 19      | 37      | 66    | 167    | 325    | 561 | 832  | 1125 |
| Ν                                                                 | Stainless steel A2, A4 and HCR, class 70                  | M <sup>0</sup> Rk,s            | [Nm]   | 26      | 52      | 92    | 232    | 454    | 784 | -    | -    |
|                                                                   | Stainless steel A4 and HCR, class 80                      | М <sup>0</sup> <sub>Rk,s</sub> | [Nm]   | 30      | 59      | 105   | 266    | 519    | 896 | -    | -    |
| Ch                                                                | aracteristic shear resistance, Partial facto              | r <sup>2)</sup>                |        |         |         |       |        |        |     |      |      |
| Ste                                                               | eel, Property class 4.6 and 5.6                           | $\gamma_{Ms,V}$                | [-]    |         |         |       | 1,6    | 7      |     |      |      |
| Ste                                                               | eel, Property class 4.8, 5.8 and 8.8                      | γMs,V                          | [-]    |         |         |       | 1,2    | 5      |     |      |      |
| Sta                                                               | ainless steel A2, A4 and HCR, class 50                    | $\gamma_{Ms,V}$                | [-]    |         |         |       | 2,3    | 8      |     |      |      |
| Sta                                                               | ainless steel A2, A4 and HCR, class 70                    | $\gamma_{Ms,V}$                | [-]    |         |         |       | 1,5    | 6      |     |      |      |
| Sta                                                               | ainless steel A4 and HCR, class 80                        | γMs,V                          | [-]    |         |         |       | 1,3    | 3      |     |      |      |

<sup>1)</sup> Values are only valid for the given stress area As. Values in brackets are valid for undersized threaded rods with smaller stress area  $A_s$  for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.  $^{2)}$  in absence of national regulation

| VJ Technology Injection System XPE440 for concrete                                                          |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods | Annex C 1 |



|                  | Characteristic val<br>action  | ues for Co         | ncrete cone fa | ilure and Splitting with all kind of                   |
|------------------|-------------------------------|--------------------|----------------|--------------------------------------------------------|
| Anchor           |                               |                    |                | All Anchor type and sizes                              |
| Concrete cone f  | ailure                        |                    | ·              |                                                        |
| Non-cracked con  | crete                         | k <sub>ucr,N</sub> | [-]            | 11,0                                                   |
| Cracked concrete |                               | k <sub>cr,N</sub>  | [-]            | 7,7                                                    |
| Edge distance    |                               | c <sub>cr,N</sub>  | [mm]           | 1,5 h <sub>ef</sub>                                    |
| Axial distance   | Axial distance                |                    | [mm]           | 2 c <sub>cr,N</sub>                                    |
| Splitting        |                               |                    | <u>.</u>       |                                                        |
|                  | h/h <sub>ef</sub> ≥ 2,0       |                    |                | 1,0 h <sub>ef</sub>                                    |
| Edge distance    | 2,0 > h/h <sub>ef</sub> > 1,3 | c <sub>cr,sp</sub> | [mm]           | $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ |
|                  | h/h <sub>ef</sub> ≤ 1,3       |                    |                | 2,4 h <sub>ef</sub>                                    |
| Axial distance   | •                             | S <sub>cr sn</sub> | [mm]           | 2 C <sub>cr sp</sub>                                   |

| VJ Technology Injection System XPE440 for concrete                                                 |           |
|----------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for Concrete cone failure and Splitting with all kind of action | Annex C 2 |
|                                                                                                    |           |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | od                           |                            |                | M8                                                 | M10       | M12     | M16      | M20                      | M24     | M27       | M30  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|----------------|----------------------------------------------------|-----------|---------|----------|--------------------------|---------|-----------|------|--|--|--|
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | TNI                        |                | ı                                                  |           | ۸ ۲     |          | <del></del>              |         |           |      |  |  |  |
| Characteristic tension res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sistance                     | N <sub>Rk,s</sub>          | [kN]           | A <sub>s</sub> · f <sub>uk</sub> (or see Table C1) |           |         |          |                          |         |           |      |  |  |  |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | $\gamma_{Ms,N}$            | [-]            |                                                    |           |         | see Ta   | able C1                  |         |           |      |  |  |  |
| Combined pull-out and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                            |                |                                                    |           |         |          |                          |         |           |      |  |  |  |
| Characteristic bond resis<br>holes (CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tance in non-crac            | ked concrete               | C20/25 in har  | nmer d                                             | drilled h | oles (H | D) and   | compr                    | essed   | air drill | ed   |  |  |  |
| 한<br>라 : 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet                     |                            |                | 20                                                 | 20        | 19      | 19       | 18                       | 17      | 16        | 16   |  |  |  |
| angera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | concrete and flooded bore    | <sup>τ</sup> Rk,ucr        | [N/mm²]        | 20                                                 | 20        | 19      | 19       | 10                       | 17      | 16        |      |  |  |  |
| ₩ II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hole                         |                            |                | 15                                                 | 15        | 15      | 14       | 13                       | 13      | 12        | 12   |  |  |  |
| Characteristic bond resis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tance in non-crac            | ked concrete               | C20/25 in har  | mmer d                                             | drilled h | oles wi | th hollo | w drill                  | bit (HD | В)        |      |  |  |  |
| <u>ല</u> I: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry, wet                     |                            |                | 17                                                 | 16        | 16      | 16       | 15                       | 14      | 14        | 13   |  |  |  |
| 1: 40°C/24°C   1: 72°C/50°C   1: 40°C/24°C   1: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | concrete                     |                            | [N1/ = 25      | 14                                                 | 14        | 14      | 13       | 13                       | 12      | 12        | 11   |  |  |  |
| I: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | flooded bore                 | <sup>τ</sup> Rk,ucr        | [N/mm²]        | 16                                                 | 16        | 16      | 15       | 15                       | 14      | 14        | 13   |  |  |  |
| ਜ਼ਿ<br>ਜ਼ਿ: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hole                         |                            |                | 14                                                 | 14        | 14      | 13       | 13                       | 12      | 12        | 11   |  |  |  |
| Characteristic bond resis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | concrete C20/              | 25 in hamme    | r drilled                                          | holes     | (HD) ,  |          |                          |         |           |      |  |  |  |
| and with hollow drill bit (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10B)                         |                            |                |                                                    |           |         |          |                          |         |           |      |  |  |  |
| Temperature  L: 40°C/24°C  angle  II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet concrete and        | <sup>τ</sup> Rk,cr         | [N/mm²]        | 7,0                                                | 7,0       | 8,5     | 8,5      | 8,5                      | 8,5     | 8,5       | 8,5  |  |  |  |
| و ق<br>اا: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flooded bore<br>hole         | TXX,CI                     | []             | 6,0                                                | 6,0       | 7,0     | 7,0      | 7,0                      | 7,0     | 7,0       | 7,0  |  |  |  |
| Reduction factor $\psi^0_{sus}$ in holes (CD) and with hollo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | -cracked cond              | crete C20/25 i | n hamı                                             | mer dril  | led hol | es (HD   | ), comp                  | oressed | d air dri | lled |  |  |  |
| L: 40°C/24°C  and the result of the result o | Dry, wet concrete and        | Ψ <sup>0</sup> sus         | 0,80           |                                                    |           |         |          |                          |         |           |      |  |  |  |
| II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flooded bore<br>hole         |                            | [-]            | 0,68                                               |           |         |          |                          |         |           |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | C25/30<br>C30/37           |                |                                                    |           |         |          | 02                       |         |           |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                            |                            |                | 1,04                                               |           |         |          |                          |         |           |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                            | 1,07           |                                                    |           |         |          |                          |         |           |      |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ncrete                       | C35/45                     |                |                                                    | 1,08      |         |          |                          |         |           |      |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ncrete                       | C40/50                     |                |                                                    |           |         | 1        | nα                       | 1,09    |           |      |  |  |  |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ncrete                       | C40/50<br>C45/55           |                |                                                    |           |         |          |                          |         |           |      |  |  |  |
| Ψс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ncrete                       | C40/50                     |                |                                                    |           |         |          |                          |         |           |      |  |  |  |
| Ψc Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ncrete                       | C40/50<br>C45/55           |                |                                                    |           |         |          | 10                       |         |           |      |  |  |  |
| Ψc  Concrete cone failure  Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ncrete                       | C40/50<br>C45/55           |                |                                                    |           |         | 1,       | 10                       |         |           |      |  |  |  |
| Increasing factors for cor<br>Ψc  Concrete cone failure  Relevant parameter  Splitting  Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ncrete                       | C40/50<br>C45/55           |                |                                                    |           |         | 1,       | 10<br>able C2            |         |           |      |  |  |  |
| Concrete cone failure Relevant parameter Splitting Relevant parameter Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | C40/50<br>C45/55           |                |                                                    |           |         | see Ta   | 10<br>able C2<br>able C2 |         |           |      |  |  |  |
| Concrete cone failure Relevant parameter Splitting Relevant parameter Installation factor for dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (HD; HDB, CD)                | C40/50<br>C45/55<br>C50/60 | [-]            |                                                    |           |         | see Ta   | 10<br>able C2<br>able C2 |         |           |      |  |  |  |
| Vc  Concrete cone failure Relevant parameter Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (HD; HDB, CD)                | C40/50<br>C45/55           | [-]            |                                                    |           |         | see Ta   | 10<br>able C2<br>able C2 |         |           |      |  |  |  |
| Concrete cone failure Relevant parameter Splitting Relevant parameter Installation factor for dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (HD; HDB, CD)<br>); HDB, CD) | C40/50<br>C45/55<br>C50/60 |                |                                                    |           |         | see Ta   | 10<br>able C2<br>able C2 |         |           |      |  |  |  |



| I .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cteristic value                                  |                         | on loads         | unde         | r stat    | ic an               | d qua               | si-sta  | atic a    | ction     |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|------------------|--------------|-----------|---------------------|---------------------|---------|-----------|-----------|--------|
| Anchor size threaded ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | od                                               |                         |                  | M8           | M10       | M12                 | M16                 | M20     | M24       | M27       | M30    |
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                         | ,                |              |           | •                   | •                   |         |           |           |        |
| Characteristic tension res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istance                                          | N <sub>Rk,s</sub>       | [kN]             |              |           | $A_{s} \cdot f_{l}$ | <sub>uk</sub> (or s | ee Tab  | le C1)    |           |        |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | γ <sub>Ms,N</sub>       | [-]              |              |           |                     | see Ta              | able C1 |           |           |        |
| Combined pull-out and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | concrete failure                                 | •                       | '                |              |           |                     |                     |         |           |           |        |
| Characteristic bond resist holes (CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ance in non-cracl                                | ked concrete C          | 20/25 in har     | nmer d       | Irilled h | oles (⊦             | ID) and             | compr   | essed     | air drill | ed     |
| Temperature<br>range<br>:I C/24°C<br>C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dry, wet<br>concrete and<br>flooded bore<br>hole | <sup>T</sup> Rk,ucr,100 | [N/mm²]          | 20           | 20        | 19                  | 19                  | 18      | 17        | 16        | 16     |
| Characteristic bond resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ance in non-cracl                                | ked concrete C          | 20/25 in har     | nmer d       | Irilled h | oles w              | ith hollo           | w drill | bit (HD   | B)        |        |
| e di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                         |                  | 17           | 16        | 16                  | 16                  | 15      | 14        | 14        | 13     |
| Temperature l: 40°C/24°C   and described limits   1: 40°C/24°C   1 | flooded bore hole                                | <sup>τ</sup> Rk,ucr,100 | [N/mm²]          | 16           | 16        | 16                  | 15                  | 15      | 14        | 14        | 13     |
| Characteristic bond resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⊥<br>tance in cracked o                          | concrete C20/2          | _i<br>5 in hamme | r drilled    | l holes   | (HD) .              | compre              | essed a | ir drille | d holes   | s (CD) |
| and with hollow drill bit (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                         |                  |              |           | . , ,               |                     |         |           |           |        |
| Temperature<br>range<br>: C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dry, wet<br>concrete and<br>flooded bore<br>hole | <sup>T</sup> Rk,cr,100  | [N/mm²]          | 6,5          | 6,5       | 7,5                 | 7,5                 | 7,5     | 7,5       | 7,5       | 7,5    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | C25/30                  | •                |              |           |                     | 1,                  | 02      |           |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | C30/37                  |                  |              |           |                     |                     | 04      |           |           |        |
| Increasing factors for con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | crete                                            | C35/45                  |                  | 1,07         |           |                     |                     |         |           |           |        |
| Ψс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | C40/50<br>C45/55        |                  | 1,08         |           |                     |                     |         |           |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | C45/55                  |                  | 1,09<br>1,10 |           |                     |                     |         |           |           |        |
| Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 1000/00                 |                  |              |           |                     | •,                  | 10      |           |           |        |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                         |                  |              |           |                     | see Ta              | able C2 |           |           |        |
| Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                         |                  |              |           |                     |                     |         |           |           |        |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                         |                  |              |           |                     | see Ta              | ble C2  |           |           |        |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                         |                  |              |           |                     |                     |         |           |           |        |
| for dry and wet concrete (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                | $\gamma_{inst}$         | [-]              |              |           |                     |                     | ,0      |           |           |        |
| for flooded bore hole (HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ; нив, си)                                       |                         |                  |              |           |                     | 1                   | ,2      |           |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                         |                  |              |           |                     |                     |         |           |           |        |
| VJ Technology Injecti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on System XPE                                    | 440 for conci           | rete             |              |           |                     |                     |         | Anne      | x C 4     |        |

Z24486.20 8.06.01-19/20

Characteristic values of tension loads under static and quasi-static action

for flooded bore hole (DD)



|                                        | cteristic value<br>ervice life of |                     | n loads      | unde                | r stat              | ic an   | d qua  | si-sta  | atic a | ction |     |
|----------------------------------------|-----------------------------------|---------------------|--------------|---------------------|---------------------|---------|--------|---------|--------|-------|-----|
| Anchor size threaded ro                | od                                |                     |              | M8                  | M10                 | M12     | M16    | M20     | M24    | M27   | M30 |
| Steel failure                          |                                   |                     |              |                     |                     |         |        |         |        |       |     |
| Characteristic tension res             | [kN]                              |                     |              | $A_{s} \cdot f_{l}$ | <sub>uk</sub> (or s | ee Tab  | le C1) |         |        |       |     |
| Partial factor                         |                                   | γ <sub>Ms,N</sub>   | [-]          |                     |                     |         | see Ta | ble C1  |        |       |     |
| Combined pull-out and                  | concrete failure                  | ,                   | 1            |                     |                     |         |        |         |        |       |     |
| Characteristic bond resis              | tance in non-cracl                | ked concrete C2     | 20/25 in dia | mond o              | drilled h           | oles (E | DD)    |         |        |       |     |
| I: 40°C/24°C  ange II: 72°C/50°C       | l l                               | _                   | [N/mm²] -    | 15                  | 14                  | 14      | 13     | 12      | 12     | 11    | 11  |
| ender II: 72°C/50°C                    |                                   | <sup>τ</sup> Rk,ucr |              | 12                  | 12                  | 11      | 10     | 9,5     | 9,5    | 9,0   | 9,0 |
| Reduction factor ψ <sup>0</sup> sus in | non-cracked cond                  | crete C20/25 in     | diamond dr   | illed ho            | oles (DI            | D)      |        |         |        |       |     |
| II: 72°C/50°C                          | Dry, wet concrete and             | $\Psi^0$ sus        | r.1          | 0,77                |                     |         |        |         |        |       |     |
|                                        | flooded bore<br>hole              | Ψ sus               | [-]          | 0,72                |                     |         |        |         |        |       |     |
|                                        | •                                 | C25/30              | •            | 1,04                |                     |         |        |         |        |       |     |
|                                        |                                   | C30/37              |              | 1,08                |                     |         |        |         |        |       |     |
| Increasing factors for cor             | ocrete                            | C35/45              |              | 1,12                |                     |         |        |         |        |       |     |
| Ψс                                     |                                   | C40/50              |              | 1,15                |                     |         |        |         |        |       |     |
|                                        |                                   | C45/55              |              | 1,17                |                     |         |        |         |        |       |     |
| Compute comp failure                   |                                   | C50/60              |              | 1,19                |                     |         |        |         |        |       |     |
| Concrete cone failure                  |                                   |                     |              |                     |                     |         | 200 To | ble C2  |        |       |     |
| Relevant parameter Splitting           |                                   |                     |              |                     |                     |         | See 1a | ible CZ |        |       |     |
| Relevant parameter                     |                                   |                     |              |                     | see Table C2        |         |        |         |        |       |     |
| Installation factor                    |                                   |                     |              |                     |                     |         | 000 10 | 1010 02 |        |       |     |
| for dry and wet concrete               | (DD)                              | T                   |              |                     |                     |         | 1      | ,0      |        |       |     |
| for flooded bore hole (DD              | , ,                               | γ <sub>inst</sub>   | [-]          | 1,2                 |                     |         | , -    | 1,4     |        |       |     |

1,2

| VJ Technology Injection System XPE440 for concrete                                       |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 5 |



| Anchor size threaded rod                                                                                                |                     | M8    | M10                                                                      | M12 | M16     | M20                               | M24     | M27     | M30    |      |
|-------------------------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------------------------------------------------------------|-----|---------|-----------------------------------|---------|---------|--------|------|
| Steel failure without lever arm                                                                                         |                     | •     |                                                                          |     | •       |                                   |         |         |        | •    |
| Characteristic shear resistance<br>Steel, strength class 4.6, 4.8 and 5.6,<br>5.8                                       | V <sup>0</sup> Rk,s | [kN]  |                                                                          |     | 0,6 •   | A <sub>s</sub> ·f <sub>uk</sub>   | (or see | Table C | 1)     |      |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A2, A4 and HCR, all<br>strength classes | V <sup>0</sup> Rk,s | [kN]  | 0,5 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1)                 |     |         |                                   |         |         |        |      |
| Partial factor                                                                                                          | $\gamma_{Ms,V}$     | [-]   | see Table C1                                                             |     |         |                                   |         |         |        |      |
| Ductility factor                                                                                                        | k <sub>7</sub>      | [-]   | 1,0                                                                      |     |         |                                   |         |         |        |      |
| Steel failure with lever arm                                                                                            | 1                   |       |                                                                          |     |         |                                   |         |         |        |      |
| Characteristic bending moment                                                                                           | M <sup>0</sup> Rk,s | [Nm]  |                                                                          |     | 1,2 • \ | N <sub>el</sub> ∙ f <sub>uk</sub> | (or see | Table C | 21)    |      |
| Elastic section modulus                                                                                                 | W <sub>el</sub>     | [mm³] | 31                                                                       | 62  | 109     | 277                               | 541     | 935     | 1387   | 1874 |
| Partial factor                                                                                                          | $\gamma_{Ms,V}$     | [-]   |                                                                          |     |         | see                               | Table C | :1      |        |      |
| Concrete pry-out failure                                                                                                |                     |       |                                                                          |     |         |                                   |         |         |        |      |
| Factor                                                                                                                  | k <sub>8</sub>      | [-]   |                                                                          |     |         |                                   | 2,0     |         |        |      |
| Installation factor                                                                                                     | $\gamma_{inst}$     | [-]   | 1,0                                                                      |     |         |                                   |         |         |        |      |
| Concrete edge failure                                                                                                   |                     |       |                                                                          |     |         |                                   |         |         |        |      |
| Effective length of fastener                                                                                            | I <sub>f</sub>      | [mm]  | min(h <sub>ef</sub> ; 12 • d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300r |     |         |                                   |         |         | 300mm) |      |
| Outside diameter of fastener                                                                                            | d <sub>nom</sub>    | [mm]  | 8                                                                        | 10  | 12      | 16                                | 20      | 24      | 27     | 30   |
| Installation factor                                                                                                     | $\gamma$ inst       | [-]   |                                                                          |     |         |                                   | 1,0     |         |        |      |

| VJ Technology Injection System XPE440 for concrete                                     |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 6 |



|                                                                                                                            | stic values<br>ce life of 50             |                     |              |              | ,           | <b>ન</b>     |              |            |             |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|--------------|--------------|-------------|--------------|--------------|------------|-------------|--|--|
| Anchor size internal threaded                                                                                              | d anchor rods                            |                     |              | IT-M6        | IT-M8       | IT-M10       | IT-M12       | IT-M16     | IT-M20      |  |  |
| Steel failure <sup>1)</sup>                                                                                                |                                          | 1                   | 1            |              | ı           | <b>.</b>     |              |            |             |  |  |
| Characteristic tension resistand                                                                                           | ce, <u>5.8</u>                           | $N_{Rk,s}$          | [kN]         | 10           | 17          | 29           | 42           | 76         | 123         |  |  |
| Steel, strength class                                                                                                      | 8.8                                      | $N_{Rk,s}$          | [kN]         | 16           | 27          | 46           | 67           | 121        | 196         |  |  |
| Partial factor, strength class 5.8                                                                                         | 8 and 8.8                                | $\gamma_{Ms,N}$     | [-]          |              | 1,5         |              |              |            |             |  |  |
| Characteristic tension resistant<br>Steel A4 and HCR, Strength cla                                                         |                                          | N <sub>Rk,s</sub>   | [kN]         | 14           | 26          | 41           | 59           | 110        | 124         |  |  |
| Partial factor                                                                                                             |                                          | $\gamma_{Ms,N}$     | [-]          |              |             | 1,87         |              |            | 2,86        |  |  |
| Combined pull-out and conc                                                                                                 | rete cone failui                         | e                   |              |              |             |              |              |            |             |  |  |
| Characteristic bond resistanc holes (CD)                                                                                   | e in non-cracke                          | ed concre           | ete C20/2    | 5 in hamn    | ner drilled | holes (HD    | ) and com    | pressed a  | air drilled |  |  |
| I: 40°C/24°C                                                                                                               | Dry, wet                                 |                     |              | 20           | 19          | 19           | 18           | 17         | 16          |  |  |
| Temperature II: 72°C/50°C                                                                                                  | concrete and flooded bore hole           | <sup>τ</sup> Rk,ucr | [N/mm²]      | 15           | 15          | 14           | 13           | 13         | 12          |  |  |
| Characteristic bond resistance                                                                                             | 1                                        | concrete            | C20/25 in    | hammer       | drilled hol | es with ho   | llow drill b | it (HDB)   |             |  |  |
| l: 40°C/24°C                                                                                                               | Dry, wet                                 |                     |              | 16           | 16          | 16           | 15           | 14         | 13          |  |  |
| Temperature II: 72°C/50°C                                                                                                  | concrete                                 |                     | FN1/ 27      | 14           | 14          | 13           | 13           | 12         | 11          |  |  |
| range I: 40°C/24°C                                                                                                         | flooded bore                             | <sup>τ</sup> Rk,ucr | [N/mm²]      | 16           | 16          | 15           | 15           | 14         | 13          |  |  |
| II: 72°C/50°C                                                                                                              | hole                                     |                     |              | 14           | 14          | 13           | 13           | 12         | 11          |  |  |
| Characteristic bond resistance and with hollow drill bit (HDB)                                                             | in cracked cond                          | rete C20            | /25 in ham   | nmer drille  | d holes (H  | ID), comp    | ressed air   | drilled ho | les (CD)    |  |  |
| Temperature : 40°C/24°C                                                                                                    | Dry, wet concrete and                    | <sup>T</sup> Rk,cr  | [N/mm²]      | 7,0          | 8,5         | 8,5          | 8,5          | 8,5        | 8,5         |  |  |
| range II: 72°C/50°C                                                                                                        | flooded bore<br>hole                     |                     |              | 6,0          | 7,0         | 7,0          | 7,0          | 7,0        | 7,0         |  |  |
| Reduction factor $\psi^0_{sus}$ in crac                                                                                    |                                          |                     | oncrete C    | 20/25 in I   | hammer d    | rilled hole: | s (HD), co   | mpressed   | air         |  |  |
| drilled holes (CD) and with hol                                                                                            | 1                                        | 3)                  | 1            |              |             |              |              |            |             |  |  |
| Temperature  : 40°C/24°C   range   II. 70°C/50°C                                                                           | Dry, wet<br>concrete and<br>flooded bore | Ψ <sup>0</sup> sus  | [-]          | 0,80         |             |              |              |            |             |  |  |
| II: 72°C/50°C                                                                                                              | hole                                     |                     |              | 0,68         |             |              |              |            |             |  |  |
|                                                                                                                            |                                          |                     | 5/30         |              |             |              | 02           |            |             |  |  |
|                                                                                                                            |                                          |                     | 0/37         |              |             |              | 04           |            |             |  |  |
| Increasing factors for concrete                                                                                            |                                          |                     | 5/45         |              |             |              | 07           |            |             |  |  |
| $\Psi_{	extsf{c}}$                                                                                                         |                                          |                     | 0/50<br>5/55 | 1,08<br>1,09 |             |              |              |            |             |  |  |
|                                                                                                                            |                                          |                     | 0/60         |              |             |              | 10           |            |             |  |  |
| Concrete cone failure                                                                                                      |                                          |                     | .,           |              |             | -,           |              |            |             |  |  |
| Relevant parameter                                                                                                         |                                          |                     |              |              |             | see Ta       | ble C2       |            |             |  |  |
| Splitting failure                                                                                                          |                                          |                     |              |              |             |              |              |            |             |  |  |
| Relevant parameter                                                                                                         |                                          |                     |              |              |             | see Ta       | ble C2       |            |             |  |  |
| Installation factor                                                                                                        |                                          |                     |              |              |             |              |              |            |             |  |  |
| for dry and wet concrete (HD; HDB, CD)  for flooded base hele (HD; HDB, CD)                                                |                                          |                     |              |              |             |              |              |            |             |  |  |
| for flooded bore hole (HD; HDB                                                                                             | , CD)                                    | inst                | [-]          |              |             | 1            | ,2           |            |             |  |  |
| <ol> <li>Fastenings (incl. nut and was<br/>The characteristic tension res</li> <li>For IT-M20 strength class 50</li> </ol> | istance for steel                        |                     |              |              |             |              |              |            | d rod.      |  |  |
| VJ Technology Injection S                                                                                                  | ystem XPE44(                             | ) for con           | crete        |              |             |              |              |            |             |  |  |
| Performances Characteristic values of tension                                                                              |                                          |                     |              |              |             |              | <b>⊢</b> ,   | Annex C    | 7           |  |  |

Z24487.20 8.06.01-19/20

Characteristic values of tension loads under static and quasi-static action



| Table C8: Characte for a serv                                  | ristic values                           |                            |              | ds unde      | er statio   | and qu     | uasi-sta     | tic actio    | วท          |  |
|----------------------------------------------------------------|-----------------------------------------|----------------------------|--------------|--------------|-------------|------------|--------------|--------------|-------------|--|
| Anchor size internal thread                                    | ed anchor rod                           | s                          |              | IT-M6        | IT-M8       | IT-M10     | IT-M12       | IT-M16       | IT-M20      |  |
| Steel failure <sup>1)</sup>                                    |                                         |                            |              |              |             |            |              |              |             |  |
| Characteristic tension resista                                 | nce, 5.8                                | N <sub>Rk,s</sub>          | [kN]         | 10           | 17          | 29         | 42           | 76           | 123         |  |
| Steel, strength class                                          | teel, strength class 8.8                |                            | [kN]         | 16           | 27          | 46         | 67           | 121          | 196         |  |
| Partial factor, strength class 5                               | 5.8 and 8.8                             | $N_{Rk,s}$ $\gamma_{Ms,N}$ | [-]          |              |             | 1          | ,5           |              | <u> </u>    |  |
| Characteristic tension resista<br>Steel A4 and HCR, Strength   |                                         | N <sub>Rk,s</sub>          | [kN]         | 14           | 26          | 41         | 59           | 110          | 124         |  |
| Partial factor                                                 |                                         | γ <sub>Ms,N</sub>          | [-]          |              |             | 1,87       |              |              | 2,86        |  |
| Combined pull-out and con                                      | crete cone fail                         |                            |              |              |             |            |              |              |             |  |
| Characteristic bond resistan holes (CD)                        | ice in non-crac                         | ked concre                 | ete C20/2    | 5 in hamn    | ner drilled | holes (HD  | ) and con    | npressed a   | air drilled |  |
| Temperature I: 40°C/24°C range                                 | Dry, wet concrete and flooded bore hole | <sup>T</sup> Rk,ucr,100    | [N/mm²]      | 20           | 19          | 19         | 18           | 17           | 16          |  |
| Characteristic bond resistance                                 | e in non-cracke                         | d concrete                 | C20/25 in    | hammer       | drilled hol | es with ho | llow drill b | oit (HDB)    |             |  |
| Temperature I: 40°C/24°C                                       | Dry, wet concrete                       |                            |              | 16           | 16          | 16         | 15           | 14           | 13          |  |
| range I: 40°C/24°C                                             | flooded bore<br>hole                    | <sup>τ</sup> Rk,ucr,100    | [14/111111-] | 16           | 16          | 15         | 15           | 14           | 13          |  |
| Characteristic bond resistance and with hollow drill bit (HDB) |                                         | ncrete C20/                | /25 in ham   | nmer drille  | ed holes (H | HD), comp  | ressed air   | r drilled ho | les (CD)    |  |
| Temperature I: 40°C/24°C range                                 | Dry, wet concrete and flooded bore hole | <sup>T</sup> Rk,cr,100     | [N/mm²]      | 6,5          | 7,5         | 7,5        | 7,5          | 7,5          | 7,5         |  |
|                                                                |                                         | C25                        |              |              |             | 1,         | 02           |              |             |  |
|                                                                |                                         | C30                        |              |              |             |            | 04           |              |             |  |
| Increasing factors for concret                                 | е                                       | C35                        |              |              |             | -          | 07           |              |             |  |
| $\Psi_{	extsf{C}}$                                             |                                         | C40<br>C45                 |              | 1,08<br>1,09 |             |            |              |              |             |  |
|                                                                |                                         | C45                        |              |              |             |            | 10           |              |             |  |
| Concrete cone failure                                          |                                         | 1 300                      |              |              |             | •,         |              |              |             |  |
| Relevant parameter                                             |                                         |                            |              |              |             | see Ta     | able C2      |              |             |  |
| Splitting failure                                              |                                         |                            |              |              |             |            |              |              |             |  |
| Relevant parameter                                             |                                         |                            |              |              |             | see Ta     | able C2      |              |             |  |
| Installation factor                                            |                                         |                            |              |              |             |            |              |              |             |  |
| for dry and wet concrete (HD;                                  | HDB, CD)                                | 26.                        | r 1          |              |             | 1          | ,0           |              |             |  |
| for flooded bore hole (HD; HD                                  | B, CD)                                  | γinst                      | [-]          |              |             | 1          | ,2           |              |             |  |
|                                                                |                                         |                            |              |              |             |            |              |              |             |  |

Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

| VJ Technology Injection System XPE440 for concrete                                       |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 8 |
|                                                                                          |           |

<sup>&</sup>lt;sup>2)</sup> For IT-M20 strength class 50 is valid



| Anchor size internal threade                                    | d anchor rods         |                     |              | IT-M6      | IT-M8         | IT-M10      | IT-M12   | IT-M16 | IT-M20 |  |  |
|-----------------------------------------------------------------|-----------------------|---------------------|--------------|------------|---------------|-------------|----------|--------|--------|--|--|
| Steel failure <sup>1)</sup>                                     |                       |                     |              |            |               | 1           |          |        |        |  |  |
| Characteristic tension resistance, 5.8                          |                       | N <sub>Rk,s</sub>   | [kN]         | 10         | 10 17 29 42 7 |             |          | 76     | 123    |  |  |
| Steel, strength class                                           | 8.8                   | N <sub>Rk,s</sub>   | [kN]         | 16         | 27            | 46          | 67       | 121    | 196    |  |  |
| Partial factor, strength class 5.                               | 8 and 8.8             | γ <sub>Ms,N</sub>   | [-]          |            | •             | 1           | ,5       |        |        |  |  |
| Characteristic tension resistan<br>Steel A4 and HCR, Strength c |                       | N <sub>Rk,s</sub>   | [kN]         | 14         | 26            | 41          | 59       | 110    | 124    |  |  |
| Partial factor                                                  | γ <sub>Ms,N</sub>     | [-]                 |              |            | 1,87          |             |          | 2,86   |        |  |  |
| Combined pull-out and cond                                      | rete cone failu       | ıre                 |              |            |               |             |          |        |        |  |  |
| Characteristic bond resistance                                  | ce in non-crack       | ced concre          | ete C20/2    | in diamo   | ond drilled   | l holes (DI | O)       |        |        |  |  |
| Temperature I: 40°C/24°C                                        | Dry, wet concrete and | TDI                 | [N/mm²]      | 14         | 14            | 13          | 12       | 12     | 11     |  |  |
| range II: 72°C/50°C                                             | flooded bore<br>hole  | <sup>τ</sup> Rk,ucr | [14/11111 ]  | 12         | 11            | 10          | 9,5      | 9,5    | 9,0    |  |  |
| Reduction factor $\psi^0_{\mbox{ sus}}$ in nor                  | n-cracked cond        | rete C20/           | 25 in diam   | ond drille | d holes ([    | DD)         |          |        |        |  |  |
| Temperature I: 40°C/24°C                                        | Dry, wet concrete and | Ψ <sup>0</sup> sus  | [-]          | 0,77       |               |             |          |        |        |  |  |
| range II: 72°C/50°C                                             | flooded bore hole     | Ψ sus               | [-]          | 0,72       |               |             |          |        |        |  |  |
|                                                                 |                       |                     | 5/30         |            |               |             | 04       |        |        |  |  |
|                                                                 |                       |                     | 0/37         |            |               | ,           | 08       |        |        |  |  |
| Increasing factors for concrete                                 | !                     |                     | 5/45         | 1,12       |               |             |          |        |        |  |  |
| $\Psi_{	extsf{c}}$                                              |                       | -                   | 0/50<br>5/55 |            |               | <u> </u>    | 15<br>17 |        |        |  |  |
|                                                                 |                       |                     | 0/60         |            |               |             |          |        |        |  |  |
| Concrete cone failure                                           |                       | 1 00                | 0,00         |            |               | • ,         |          |        |        |  |  |
| Relevant parameter                                              |                       |                     |              |            |               | see Ta      | able C2  |        |        |  |  |
| Splitting failure                                               |                       |                     |              |            |               |             |          |        |        |  |  |
| Relevant parameter see Table C2                                 |                       |                     |              |            |               |             |          |        |        |  |  |
| Installation factor                                             |                       |                     |              |            |               |             |          |        |        |  |  |
| for dry and wet concrete (DD)                                   |                       | $\gamma_{inst}$     | [-]          |            |               | 1           | ,0       |        |        |  |  |
| for flooded bore hole (DD)                                      |                       | l'illist            | []           | 1,2 1,4    |               |             |          |        |        |  |  |

Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

For IT-M20 strength class 50 is valid

| VJ Technology Injection System XPE440 for concrete                                       |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 9 |
|                                                                                          |           |

8.06.01-19/20 Z24487.20



| Anahar aiza far intarnal thread                                                                    | ad anch | or rodo                        |      | IT-M6                                                                 | IT MAG        | IT MAA | IT MAG | IT MAG | IT-M20                      |
|----------------------------------------------------------------------------------------------------|---------|--------------------------------|------|-----------------------------------------------------------------------|---------------|--------|--------|--------|-----------------------------|
| Anchor size for internal thread                                                                    | ed anch | or roas                        |      | 11-W6                                                                 | IT-M8         | IT-M10 | IT-M12 | IT-M16 | 11-WIZU                     |
| Steel failure without lever arm <sup>1)</sup>                                                      | )       |                                |      |                                                                       |               |        |        |        |                             |
| Characteristic shear resistance,                                                                   | 5.8     | V <sup>0</sup> Rk,s            | [kN] | 5                                                                     | 9             | 15     | 21     | 38     | 61                          |
| Steel, strength class                                                                              | 8.8     | V <sup>0</sup> Rk,s            | [kN] | 8                                                                     | 14            | 23     | 34     | 60     | 98                          |
| Partial factor, strength class 5.8 a                                                               | and 8.8 | $\gamma_{Ms,V}$                | [-]  |                                                                       |               |        | 1,25   |        |                             |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup> |         | V <sup>0</sup> Rk,s            | [kN] | 7                                                                     | 7 13 20 30 55 |        |        |        |                             |
| Partial factor                                                                                     |         | $\gamma_{Ms,V}$                | [-]  |                                                                       |               | 1,56   |        |        | 2,38                        |
| Ductility factor                                                                                   |         | k <sub>7</sub>                 | [-]  | 1,0                                                                   |               |        |        |        |                             |
| Steel failure with lever arm <sup>1)</sup>                                                         |         |                                |      |                                                                       |               |        |        |        |                             |
| Characteristic bending moment,                                                                     | 5.8     | M <sup>0</sup> Rk,s            | [Nm] | 8                                                                     | 19            | 37     | 66     | 167    | 325                         |
| Steel, strength class                                                                              | 8.8     | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 12                                                                    | 30            | 60     | 105    | 267    | 519                         |
| Partial factor, strength class 5.8 a                                                               | and 8.8 | γ <sub>Ms,V</sub>              | [-]  |                                                                       |               |        | 1,25   |        |                             |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>   |         | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 11                                                                    | 26            | 52     | 92     | 233    | 456                         |
| Partial factor                                                                                     |         | $\gamma_{Ms,V}$                | [-]  |                                                                       | 2,38          |        |        |        |                             |
| Concrete pry-out failure                                                                           |         |                                |      |                                                                       |               |        |        |        |                             |
| Factor                                                                                             |         | k <sub>8</sub>                 | [-]  |                                                                       |               |        | 2,0    |        |                             |
| Installation factor                                                                                |         | γinst                          | [-]  | 1,0                                                                   |               |        |        |        |                             |
| Concrete edge failure                                                                              |         |                                |      |                                                                       |               |        |        |        |                             |
| Effective length of fastener                                                                       |         | I <sub>f</sub>                 | [mm] | min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 3 |               |        |        |        | min(h <sub>ef</sub> ; 300mm |
| Outside diameter of fastener                                                                       |         | d <sub>nom</sub>               | [mm] | 10                                                                    | 12            | 16     | 20     | 24     | 30                          |
| Installation factor                                                                                |         | γinst                          | [-]  |                                                                       | •             | •      | 1,0    | •      |                             |
|                                                                                                    |         |                                |      |                                                                       |               |        |        |        |                             |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IT-M20 strength class 50 is valid

| VJ Technology Injection System XPE440 for concrete                                     |            |
|----------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 10 |



| Table C11: Cha                                                                         | racteristic va<br>a service life   |                      |             | oads         | und      | er st  | atic    | and c   | quasi              | i-stat   | ic ac   | tion     |         |
|----------------------------------------------------------------------------------------|------------------------------------|----------------------|-------------|--------------|----------|--------|---------|---------|--------------------|----------|---------|----------|---------|
| Anchor size reinforci                                                                  |                                    |                      |             | Ø8           | Ø 10     | Ø 12   | Ø 14    | Ø 16    | Ø 20               | Ø 24     | Ø 25    | Ø 28     | Ø 32    |
| Steel failure                                                                          |                                    |                      |             |              | I        |        |         |         |                    |          |         |          |         |
| Characteristic tension                                                                 | resistance                         | N <sub>Rk,s</sub>    | [kN]        |              |          |        |         | $A_s$ • | f <sub>uk</sub> 1) |          |         |          |         |
| Cross section area                                                                     |                                    | A <sub>s</sub>       | [mm²]       | 50           | 79       | 113    | 154     | 201     | 314                | 452      | 491     | 616      | 804     |
| Partial factor                                                                         |                                    | γ <sub>Ms,N</sub>    | [-]         | 1,42)        |          |        |         |         |                    |          |         |          |         |
| Combined pull-out ar                                                                   |                                    |                      |             |              |          |        |         |         |                    |          |         |          |         |
| Characteristic bond re                                                                 | esistance in non                   | -cracked co          | ncrete C2   | 20/25 i      | n ham    | mer dr | illed h | oles (F | ID) an             | d com    | presse  | ed air c | Irilled |
| Temperature   1: 40°C/24°C     1: 72°C/50°C                                            | Dry, wet concrete and              | <sup>T</sup> Rk,ucr  | [N/mm²]     | 16           | 16       | 16     | 16      | 16      | 16                 | 15       | 15      | 15       | 15      |
| 다. 72°C/50°C                                                                           | flooded bore<br>hole               | TKK,UCI              | [,]         | 12           | 12       | 12     | 12      | 12      | 12                 | 12       | 12      | 11       | 11      |
| Characteristic bond res                                                                | sistance in non-c                  | racked conc          | rete C20/2  | 25 in ha     | ammei    | drille | d holes | with I  | nollow             | drill bi | it (HDE | 3)       |         |
| <u>ဗ</u> <u>l: 40°C/24°C</u>                                                           | Dry, wet                           |                      |             | 14           | 14       | 13     | 13      | 13      | 13                 | 13       | 13      | 13       | 13      |
| en                                                                                     | concrete                           | $\Big]_{	au_{-}}$    | [N/mm²]     | 12           | 12       | 12     | 11      | 11      | 11                 | 11       | 11      | 11       | 11      |
| ଞ୍ଚଳ ।: 40°C/24°C                                                                      | flooded bore                       | <sup>τ</sup> Rk,ucr  | [N/mm²]     | 13           | 13       | 13     | 13      | 13      | 13                 | 13       | 13      | 13       | 13      |
| μ II: 72°C/50°C                                                                        | hole                               |                      |             | 11           | 11       | 11     | 11      | 11      | 11                 | 11       | 11      | 11       | 11      |
| Characteristic bond rea                                                                |                                    | ed concrete          | C20/25 in   | hamm         | er drill | ed hol | es (H   | ), con  | press              | ed air   | drilled | holes    | (CD)    |
| हु है ।: 40°C/24°C                                                                     | iconcrete and i                    |                      |             | 7,0          | 7,0      | 8,5    | 8,5     | 8,5     | 8,5                | 8,5      | 8,5     | 8,5      | 8,5     |
| e                                                                                      |                                    | <sup>τ</sup> Rk,cr   | [N/mm²]     | 6,0          | 6,0      | 7,0    | 7,0     | 7,0     | 7,0                | 7,0      | 7,0     | 7,0      | 7,0     |
| Reduction factor $\psi^0_{su}$ drilled holes (CD) and $\varphi$                        | ed concre                          | te C20               | )/25 in     | hamm         | ner dril | led ho | les (HI | D), cor | mpress             | sed air  |         |          |         |
| I: 40°C/24°C  an be a li: 72°C/50°C                                                    | Dry, wet concrete and flooded bore | Ψ <sup>0</sup> sus   | [-]         | 0,80         |          |        |         |         |                    |          |         |          |         |
| II: 72°C/50°C                                                                          | hole                               | sus [1]              |             | 0,68         |          |        |         |         |                    |          |         |          |         |
|                                                                                        |                                    | C25                  |             | 1,02         |          |        |         |         |                    |          |         |          |         |
|                                                                                        |                                    | C30                  |             | 1,04         |          |        |         |         |                    |          |         |          |         |
| Increasing factors for $\Psi_c$                                                        | onciele                            | C35                  |             | 1,07<br>1,08 |          |        |         |         |                    |          |         |          |         |
| '                                                                                      |                                    | C40                  |             |              |          |        |         |         | 09                 |          |         |          |         |
|                                                                                        |                                    | C50                  |             |              |          |        |         |         | 10                 |          |         |          |         |
| Concrete cone failure                                                                  | 9                                  | •                    |             |              |          |        |         |         |                    |          |         |          |         |
| Relevant parameter                                                                     |                                    |                      |             |              |          |        |         | see Ta  | ble C              | 2        |         |          |         |
| Splitting                                                                              |                                    |                      |             |              |          |        |         |         |                    |          |         |          |         |
| Relevant parameter                                                                     |                                    |                      |             |              |          |        |         | see Ta  | ble C              | 2        |         |          |         |
| Installation factor                                                                    |                                    | T                    |             | ı            |          |        |         |         |                    |          |         |          |         |
| for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  7inst  [-] |                                    |                      |             |              |          |        |         |         |                    |          |         |          |         |
| 1) f <sub>uk</sub> shall be taken from 2) in absence of national                       | n the specification                | l<br>ns of reinforci | ng bars     |              |          |        |         |         | <u>,∠</u>          |          |         |          |         |
| VJ Technology Inje                                                                     | <del>-</del>                       | (PE440 for           | concrete    |              |          |        |         |         |                    |          |         |          |         |
| Performances<br>Characteristic values of                                               | of tension loads ur                | ider static an       | d quasi-sta | itic acti    | on       |        |         |         |                    | A        | nnex    | C 11     |         |



| Anchor size reinforcia                                                                 | ng bar                                                         |                         |              | Ø8                | Ø 10     | Ø 12   | Ø 14    | Ø 16    | Ø 20         | Ø 24     | Ø 25    | Ø 28     | Ø 32    |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|--------------|-------------------|----------|--------|---------|---------|--------------|----------|---------|----------|---------|
| Steel failure                                                                          |                                                                |                         |              |                   |          |        |         |         |              |          |         |          |         |
| Characteristic tension r                                                               | esistance                                                      | N <sub>Rk,s</sub>       | [kN]         |                   |          |        |         | $A_s$ • | $f_{uk}^{1}$ |          |         |          |         |
| Cross section area                                                                     |                                                                | A <sub>s</sub>          | [mm²]        | 50                | 79       | 113    | 154     | 201     | 314          | 452      | 491     | 616      | 804     |
| Partial factor                                                                         |                                                                | γ <sub>Ms,N</sub>       | [-]          | 1,4 <sup>2)</sup> |          |        |         |         |              |          |         |          |         |
| Combined pull-out an                                                                   | d concrete failu                                               | ire                     |              |                   |          |        |         |         |              |          |         |          |         |
| Characteristic bond re holes (CD)                                                      | sistance in non-                                               | -cracked co             | ncrete C2    | 0/25 i            | n ham    | mer dr | illed h | oles (H | ID) an       | d com    | presse  | ed air d | Irilled |
| Temperature<br>range<br>::<br>O <sub>0</sub> P5/O <sub>0</sub>                         | Dry, wet<br>concrete and<br>flooded bore<br>hole               | <sup>T</sup> Rk,ucr,100 | [N/mm²]      | 16                | 16       | 16     | 16      | 16      | 16           | 15       | 15      | 15       | 15      |
| Characteristic bond res                                                                | istance in non-c                                               | racked conc             | rete C20/2   | 5 in ha           | ammer    | drille | holes   | with I  | nollow       | drill bi | t (HDE  | 3)       |         |
| rature<br>Be : 40°C/24°C                                                               | l: 40°C/24°C Dry, wet concrete  l: 40°C/24°C flooded bore hole |                         |              | 14                | 14       | 13     | 13      | 13      | 13           | 13       | 13      | 13       | 13      |
| ege I: 40°C/24°C                                                                       |                                                                |                         | [N/mm²] -    | 13                | 13       | 13     | 13      | 13      | 13           | 13       | 13      | 13       | 13      |
| Characteristic bond res                                                                | istance in cracke                                              | ed concrete             | C20/25 in    | hamm              | er drill | ed hol | es (HD  | D), con | npress       | ed air   | drilled | holes    | (CD)    |
| and with hollow drill bit                                                              | (HDB)                                                          |                         | <del> </del> |                   |          |        |         | ı       | I            | ı        | ı       | Ι        |         |
| Temperature<br>range<br>:I :L<br>C\2,0<br>C\2                                          | Dry, wet<br>concrete and<br>flooded bore<br>hole               | <sup>τ</sup> Rk,cr,100  | [N/mm²]      | 6,5               | 6,5      | 7,5    | 7,5     | 7,5     | 7,5          | 7,5      | 7,5     | 7,5      | 7,5     |
|                                                                                        |                                                                | C25                     | /30          | 1,02              |          |        |         |         |              |          |         |          |         |
|                                                                                        |                                                                | C30                     |              | 1,04              |          |        |         |         |              |          |         |          |         |
| Increasing factors for c                                                               | oncrete                                                        | C35                     | /45          |                   |          |        |         |         | 07           |          |         |          |         |
| $\Psi_{C}$                                                                             |                                                                | C40                     |              |                   |          |        |         |         | 80           |          |         |          |         |
|                                                                                        |                                                                | C45                     |              |                   |          |        |         |         | 09           |          |         |          |         |
| Concrete cone failure                                                                  |                                                                | C50                     | /60          |                   |          |        |         | 1,      | 10           |          |         |          |         |
| Relevant parameter                                                                     | ·                                                              |                         |              |                   |          |        |         | see Ta  | able C       | 2        |         |          |         |
| Splitting                                                                              |                                                                |                         |              |                   |          |        | •       |         | 10.00        | _        |         |          |         |
| Relevant parameter                                                                     |                                                                |                         |              |                   |          |        | see Ta  | ble C   | 2            |          |         |          |         |
| Installation factor                                                                    |                                                                |                         |              |                   |          |        |         |         |              | _        |         |          |         |
|                                                                                        | e (HD: HDB. CD)                                                |                         |              |                   |          |        |         | 1       | .0           |          |         |          |         |
| for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  Yinst  [-] |                                                                |                         |              |                   | 1,0      |        |         |         |              |          |         |          |         |

| VJ Technology Injection System XPE440 for concrete                                       |            |
|------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 12 |



|                                                                                             | Table C13: Characteristic values of tension loads under static and quasi-static action for a service life of 50 years |                     |             |          |          |        |        |                  |                        |          |      |      |      |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|-------------|----------|----------|--------|--------|------------------|------------------------|----------|------|------|------|
| Anchor size reinforci                                                                       | ng bar                                                                                                                |                     |             | Ø8       | Ø 10     | Ø 12   | Ø 14   | Ø 16             | Ø 20                   | Ø 24     | Ø 25 | Ø 28 | Ø 32 |
| Steel failure                                                                               |                                                                                                                       |                     |             |          | •        | •      |        |                  |                        | •        | •    | '    | •    |
| Characteristic tension                                                                      | resistance                                                                                                            | $N_{Rk,s}$          | [kN]        |          |          |        |        | A <sub>s</sub> · | f <sub>uk</sub> 1)     |          |      |      |      |
| Cross section area                                                                          |                                                                                                                       | A <sub>s</sub>      | [mm²]       | 50       | 79       | 113    | 154    | 201              | 314                    | 452      | 491  | 616  | 804  |
| Partial factor                                                                              |                                                                                                                       | γ <sub>Ms,N</sub>   | [-]         |          |          |        |        | 1,               | <b>4</b> <sup>2)</sup> |          |      |      |      |
| Combined pull-out ar                                                                        |                                                                                                                       |                     | •           |          |          |        |        |                  |                        |          |      |      |      |
| Characteristic bond resistance in non-cracked concrete C20/25 in diamond drilled holes (DD) |                                                                                                                       |                     |             |          |          |        |        |                  |                        |          |      |      |      |
| I: 40°C/24°C                                                                                | concrete and                                                                                                          | <sup>τ</sup> Rk,ucr | [N/mm²]     | 14       | 13       | 13     | 13     | 12               | 12                     | 11       | 11   | 11   | 11   |
| He die II: 72°C/50°C                                                                        | II: 72°C/50°C   flooded bore hole                                                                                     |                     | [14/111111] | 11       | 11       | 10     | 10     | 10               | 9,5                    | 9,5      | 9,5  | 9,0  | 9,0  |
| Reduction factor ψ <sup>0</sup> su                                                          | <sub>s</sub> in non-cracked                                                                                           | d concrete C        | 20/25 in o  | diamor   | nd drill | ed hol | es (DD | ))               |                        |          |      |      |      |
| nperature<br>range<br>: 40°C/24°C                                                           | Dry, wet concrete and                                                                                                 | 0                   | [-]         | 0,77     |          |        |        |                  |                        |          |      |      |      |
| I: 40°C/24°C                                                                                | flooded bore<br>hole                                                                                                  | $\Psi^0$ sus        |             | 0,72     |          |        |        |                  |                        |          |      |      |      |
|                                                                                             | •                                                                                                                     | C25                 | /30         | 1,04     |          |        |        |                  |                        |          |      |      |      |
|                                                                                             |                                                                                                                       | C30,                | /37         | 1,08     |          |        |        |                  |                        |          |      |      |      |
| Increasing factors for o                                                                    | concrete                                                                                                              | C35                 | /45         | 1,12     |          |        |        |                  |                        |          |      |      |      |
| Ψс                                                                                          |                                                                                                                       | C40                 |             |          |          |        |        |                  | 15                     |          |      |      |      |
|                                                                                             |                                                                                                                       | C45                 |             |          |          |        |        |                  | 17                     |          |      |      |      |
| 0 ( ( )                                                                                     |                                                                                                                       | C50                 | /60         |          |          |        |        | 1,               | 19                     |          |      |      |      |
| Concrete cone failure                                                                       | 9                                                                                                                     |                     |             | I        |          |        |        |                  |                        |          |      |      |      |
| Relevant parameter                                                                          |                                                                                                                       |                     |             |          |          |        |        | see 1            | able C                 | 2        |      |      |      |
| Splitting                                                                                   |                                                                                                                       |                     |             |          |          |        |        | <del></del>      | - 1-1 - 01             |          |      |      |      |
| Relevant parameter                                                                          |                                                                                                                       |                     |             |          |          |        |        | see 18           | able C                 |          |      |      |      |
| Installation factor                                                                         | to (DD)                                                                                                               |                     | Ι           |          |          |        |        | 4                |                        |          |      |      |      |
| for dry and wet concrete for flooded bore hole (I                                           |                                                                                                                       | γ <sub>inst</sub>   | [-]         |          | 1        | ,2     |        | <u> </u>         | ,0                     | 1        | ,4   |      |      |
| To hooded bote fible (t                                                                     | <i></i>                                                                                                               |                     | L           | <u> </u> | - '      | ,_     |        | <u> </u>         |                        | <u>'</u> | ,⊸r  |      |      |

 $<sup>^{1)}\,</sup>f_{uk}$  shall be taken from the specifications of reinforcing bars  $^{2)}$  in absence of national regulation

| VJ Technology Injection System XPE440 for concrete                                       |            |
|------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 13 |



| Table C14: Characteristic       | c values o                     | f shear | load                                  | ls un | der   | stati                | c and              | d qua             | asi-st               | atic ad | ction                 |      |
|---------------------------------|--------------------------------|---------|---------------------------------------|-------|-------|----------------------|--------------------|-------------------|----------------------|---------|-----------------------|------|
| Anchor size reinforcing bar     |                                |         | Ø8                                    | Ø 10  | Ø 12  | Ø 14                 | Ø 16               | Ø 20              | Ø 24                 | Ø 25    | Ø 28                  | Ø 32 |
| Steel failure without lever arm |                                |         | •                                     | •     | •     | •                    | •                  | •                 |                      | •       | •                     |      |
| Characteristic shear resistance | V <sup>0</sup> Rk,s            | [kN]    |                                       |       |       |                      | 0,5                | ·As               | f <sub>uk</sub> 1)   |         |                       |      |
| Cross section area              | A <sub>s</sub>                 | [mm²]   | 50 79 113 154 201 314 452 491 616 804 |       |       |                      |                    |                   |                      | 804     |                       |      |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]     |                                       | •     |       |                      |                    | 1,52              | )                    |         |                       |      |
| Ductility factor                | k <sub>7</sub>                 | [-]     |                                       |       |       |                      |                    | 1,0               |                      |         |                       |      |
| Steel failure with lever arm    |                                | •       | •                                     |       |       |                      |                    |                   |                      |         |                       |      |
| Characteristic bending moment   | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    |                                       |       |       |                      | 1.2                | • W <sub>el</sub> | • f <sub>uk</sub> 1) |         |                       |      |
| Elastic section modulus         | W <sub>el</sub>                | [mm³]   | 50                                    | 98    | 170   | 269                  | 402                | 785               | 1357                 | 1534    | 2155                  | 3217 |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]     |                                       | •     | •     | •                    |                    | 1,5 <sup>2</sup>  | )                    |         |                       |      |
| Concrete pry-out failure        |                                | •       |                                       |       |       |                      |                    |                   |                      |         |                       |      |
| Factor                          | k <sub>8</sub>                 | [-]     |                                       |       |       |                      |                    | 2,0               |                      |         |                       |      |
| Installation factor             | γ <sub>inst</sub>              | [-]     |                                       |       |       |                      |                    | 1,0               |                      |         |                       |      |
| Concrete edge failure           |                                | •       | •                                     |       |       |                      |                    |                   |                      |         |                       |      |
| Effective length of fastener    | I <sub>f</sub>                 | [mm]    |                                       |       | min(h | n <sub>ef</sub> ; 12 | • d <sub>nor</sub> | <sub>n</sub> )    |                      | min(    | h <sub>ef</sub> ; 300 | mm)  |
| Outside diameter of fastener    | d <sub>nom</sub>               | [mm]    | 8                                     | 10    | 12    | 14                   | 16                 | 20                | 24                   | 25      | 28                    | 32   |
| Installation factor             | γ <sub>inst</sub>              | [-]     |                                       | -     | •     | •                    |                    | 1,0               |                      |         |                       |      |

 $<sup>^{1)}\,</sup>f_{uk}$  shall be taken from the specifications of reinforcing bars  $^{2)}$  in absence of national regulation

| VJ Technology Injection System XPE440 for concrete                                     |            |
|----------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 14 |



| Table C17: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD) |
|------------|-----------------------------------------------------------------------------|
|            | compressed air drilled holes (CD) and with hollow drill bit (HDB)           |

| Anchor size threaded ro                                                                     | od                                 |                    | M8        | M10       | M12        | M16        | M20       | M24   | M27   | M30   |
|---------------------------------------------------------------------------------------------|------------------------------------|--------------------|-----------|-----------|------------|------------|-----------|-------|-------|-------|
| Non-cracked concrete (                                                                      | C20/25 unde                        | static and quasi-  | -static a | ction for | a servi    | ce life of | f 50 year | rs    |       |       |
| Temperature range I:                                                                        | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]       | 0,028     | 0,029     | 0,030      | 0,033      | 0,035     | 0,038 | 0,039 | 0,041 |
| 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,028     | 0,029     | 0,030      | 0,033      | 0,035     | 0,038 | 0,039 | 0,041 |
| Temperature range II:                                                                       | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,038     | 0,039     | 0,040      | 0,044      | 0,047     | 0,051 | 0,052 | 0,055 |
| 72°C/50°C                                                                                   | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,047     | 0,049     | 0,051      | 0,055      | 0,059     | 0,064 | 0,067 | 0,070 |
| Cracked concrete C20/25 under static and quasi-static action for a service life of 50 years |                                    |                    |           |           |            |            |           |       |       |       |
| Temperature range I:                                                                        | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,069     | 0,071     | 0,072      | 0,074      | 0,076     | 0,079 | 0,081 | 0,082 |
| 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,193     | 0,115     | 0,122      | 0,128      | 0,135     | 0,142 | 0,155 | 0,171 |
| Temperature range II:                                                                       | $\delta_{N0}$ -factor              | [mm/(N/mm²)]       | 0,092     | 0,095     | 0,096      | 0,099      | 0,102     | 0,106 | 0,109 | 0,110 |
| 72°C/50°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,259     | 0,154     | 0,163      | 0,172      | 0,181     | 0,189 | 0,207 | 0,229 |
| Non-cracked concrete (                                                                      | C20/25 unde                        | static and quasi-  | -static a | ction for | a servi    | ce life of | f 100 yea | ars   |       |       |
| Temperature range I:                                                                        | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,028     | 0,029     | 0,030      | 0,033      | 0,035     | 0,038 | 0,039 | 0,041 |
| 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,028     | 0,030     | 0,031      | 0,033      | 0,036     | 0,038 | 0,040 | 0,042 |
| Cracked concrete C20/2                                                                      | 25 under stat                      | ic and quasi-stati | ic action | for a se  | ervice lif | e of 100   | years     |       |       |       |
| Temperature range I:                                                                        | $\delta_{N0}$ -factor              | [mm/(N/mm²)]       | 0,069     | 0,071     | 0,072      | 0,074      | 0,076     | 0,079 | 0,081 | 0,082 |
| 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,193     | 0,115     | 0,122      | 0,128      | 0,135     | 0,142 | 0,155 | 0,171 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \qquad \tau \text{: action bond stress for tension}$ 

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;

# Table C15: Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD)

| Anchor size threaded ro                                                                         | M8                                 | M10          | M12   | M16   | M20   | M24   | M27   | M30   |       |       |
|-------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Non-cracked concrete C20/25 under static and quasi-static action for a service life of 50 years |                                    |              |       |       |       |       |       |       |       |       |
| Temperature range I:<br>40°C/24°C                                                               | $\delta_{N0}$ -factor              | [mm/(N/mm²)] | 0,011 | 0,012 | 0,012 | 0,013 | 0,014 | 0,014 | 0,015 | 0,015 |
|                                                                                                 | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)] | 0,018 | 0,019 | 0,019 | 0,020 | 0,022 | 0,023 | 0,024 | 0,025 |
| Temperature range II:                                                                           | $\delta_{N0}$ -factor              | [mm/(N/mm²)] | 0,013 | 0,014 | 0,014 | 0,015 | 0,016 | 0,016 | 0,018 | 0,018 |
| 72°C/50°C                                                                                       | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)] | 0,052 | 0,053 | 0,055 | 0,058 | 0,062 | 0,065 | 0,068 | 0,070 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$ 

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;

# Table C16: Displacements under shear load<sup>2)</sup> for all drilling methods

| Anchor size thread                                                           | M8                            | M10     | M12  | M16  | M20  | M24  | M27  | M30  |      |      |
|------------------------------------------------------------------------------|-------------------------------|---------|------|------|------|------|------|------|------|------|
| Non-cracked and cracked concrete C20/25 under static and quasi-static action |                               |         |      |      |      |      |      |      |      |      |
| All temperature                                                              | $\delta_{ m V0}$ -factor      | [mm/kN] | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges                                                                       | $\delta_{ m V\infty}$ -factor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

## VJ Technology Injection System XPE440 for concrete

## Performances

Displacements under static and quasi-static action (threaded rods)

Annex C 15



| Table C18: Displacements under tension load | d <sup>1)</sup> in hammer drilled holes (HD), |
|---------------------------------------------|-----------------------------------------------|
| compressed air drilled holes (CD)           | and with hollow drill bit (HDB)               |

| Anchor size Internal thre                                                                   | eaded anchor                       | rod              | IT-M6       | IT-M8       | IT-M10       | IT-M12    | IT-M16 | IT-M20 |  |
|---------------------------------------------------------------------------------------------|------------------------------------|------------------|-------------|-------------|--------------|-----------|--------|--------|--|
| Non-cracked concrete C                                                                      | 20/25 under st                     | atic and quasi-s | tatic actio | n for a ser | vice life of | 50 years  | •      |        |  |
| Temperature range I:                                                                        | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]     | 0,029       | 0,030       | 0,033        | 0,035     | 0,038  | 0,041  |  |
| 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]     | 0,029       | 0,030       | 0,033        | 0,035     | 0,038  | 0,041  |  |
| Temperature range II:                                                                       | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]     | 0,039       | 0,040       | 0,044        | 0,047     | 0,051  | 0,055  |  |
| 72°C/50°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]     | 0,049       | 0,051       | 0,055        | 0,059     | 0,064  | 0,070  |  |
| Cracked concrete C20/25 under static and quasi-static action for a service life of 50 years |                                    |                  |             |             |              |           |        |        |  |
| Temperature range I:                                                                        | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]     | 0,071       | 0,072       | 0,074        | 0,076     | 0,079  | 0,082  |  |
| 40°C/24°C                                                                                   | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]     | 0,115       | 0,122       | 0,128        | 0,135     | 0,142  | 0,171  |  |
| Temperature range II:                                                                       | $\delta_{N0}$ -factor              | [mm/(N/mm²)]     | 0,095       | 0,096       | 0,099        | 0,102     | 0,106  | 0,110  |  |
| 72°C/50°C                                                                                   | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]     | 0,154       | 0,163       | 0,172        | 0,181     | 0,189  | 0,229  |  |
| Non-cracked concrete C                                                                      | 20/25 under st                     | atic and quasi-s | tatic actio | n for a ser | vice life of | 100 years |        |        |  |
| Temperature range I:                                                                        | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]     | 0,029       | 0,030       | 0,033        | 0,035     | 0,038  | 0,041  |  |
| 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]     | 0,030       | 0,031       | 0,033        | 0,036     | 0,038  | 0,042  |  |
| Cracked concrete C20/2                                                                      | 5 under static                     | and quasi-static | action for  | a service   | life of 100  | years     |        |        |  |
| Temperature range I:                                                                        | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]     | 0,071       | 0,072       | 0,074        | 0,076     | 0,079  | 0,082  |  |
| 40°C/24°C                                                                                   | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]     | 0,115       | 0,122       | 0,128        | 0,135     | 0,142  | 0,171  |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ 

 $\tau$ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot \tau;$ 

# Table C19: Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD)

| Anchor size Internal thre                                                                       | od                                   | IT-M6        | IT-M8 | IT-M10 | IT-M12 | IT-M16 | IT-M20 |       |  |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------|--------------|-------|--------|--------|--------|--------|-------|--|--|--|--|
| Non-cracked concrete C20/25 under static and quasi-static action for a service life of 50 years |                                      |              |       |        |        |        |        |       |  |  |  |  |
| Temperature range I:<br>40°C/24°C                                                               | $\delta_{	extsf{N0}}$ -factor        | [mm/(N/mm²)] | 0,012 | 0,012  | 0,013  | 0,014  | 0,014  | 0,015 |  |  |  |  |
|                                                                                                 | $\delta_{N\infty}$ -factor           | [mm/(N/mm²)] | 0,019 | 0,019  | 0,020  | 0,022  | 0,023  | 0,025 |  |  |  |  |
| Temperature range II:                                                                           | $\delta_{	extsf{N0}}	extsf{-factor}$ | [mm/(N/mm²)] | 0,014 | 0,014  | 0,015  | 0,016  | 0,016  | 0,018 |  |  |  |  |
| 72°C/50°C                                                                                       | $\delta_{N\infty}$ -factor           | [mm/(N/mm²)] | 0,053 | 0,055  | 0,058  | 0,062  | 0,065  | 0,070 |  |  |  |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$  $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor} \cdot \tau;$   $\tau$ : action bond stress for tension

# Table C20: Displacements under shear load<sup>2)</sup> for all drilling methods

| Anchor size Internal threaded anchor rod                                     |                               |         | IT-M6 | IT-M8 | IT-M10 | IT-M12 | IT-M16 | IT-M20 |  |
|------------------------------------------------------------------------------|-------------------------------|---------|-------|-------|--------|--------|--------|--------|--|
| Non-cracked and cracked concrete C20/25 under static and quasi-static action |                               |         |       |       |        |        |        |        |  |
| All temperature                                                              | $\delta_{ m V0}$ -factor      | [mm/kN] | 0,07  | 0,06  | 0,06   | 0,05   | 0,04   | 0,04   |  |
| ranges                                                                       | $\delta_{ m V\infty}$ -factor | [mm/kN] | 0,10  | 0,09  | 0,08   | 0,08   | 0,06   | 0,06   |  |

<sup>2)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$ 

## VJ Technology Injection System XPE440 for concrete

## **Performances**

Displacements under static and quasi-static action (Internal threaded anchor rod)

Annex C 16



| Table C21: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD), |
|------------|------------------------------------------------------------------------------|
|            | compressed air drilled holes (CD) and with hollow drill bit (HDB)            |

| Anchor size reinfo                                                                              | orcing bar                    |                  | Ø8       | Ø 10     | Ø 12     | Ø 14     | Ø 16     | Ø 20     | Ø 24    | Ø 25  | Ø 28  | Ø 32  |
|-------------------------------------------------------------------------------------------------|-------------------------------|------------------|----------|----------|----------|----------|----------|----------|---------|-------|-------|-------|
| Non-cracked concrete C20/25 under static and quasi-static action for a service life of 50 years |                               |                  |          |          |          |          |          |          |         |       |       |       |
| Temp range I:                                                                                   | $\delta_{	extsf{N0}}$ -factor | [mm/(N/mm²)]     | 0,028    | 0,029    | 0,030    | 0,031    | 0,033    | 0,035    | 0,038   | 0,038 | 0,040 | 0,043 |
| 40°C/24°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]     | 0,028    | 0,029    | 0,030    | 0,031    | 0,033    | 0,035    | 0,038   | 0,038 | 0,040 | 0,043 |
| Temp range II:                                                                                  | $\delta_{N0}$ -factor         | [mm/(N/mm²)]     | 0,038    | 0,039    | 0,040    | 0,042    | 0,044    | 0,047    | 0,051   | 0,051 | 0,054 | 0,058 |
| 72°C/50°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]     | 0,047    | 0,049    | 0,051    | 0,053    | 0,055    | 0,059    | 0,065   | 0,065 | 0,068 | 0,072 |
| Cracked concrete                                                                                | C20/25 und                    | er static and qu | asi-stat | ic actio | n for a  | service  | life of  | 50 yea   | rs      |       |       |       |
| Temp range I:                                                                                   | $\delta_{N0}$ -factor         | [mm/(N/mm²)]     | 0,069    | 0,071    | 0,072    | 0,073    | 0,074    | 0,076    | 0,079   | 0,079 | 0,081 | 0,084 |
| 40°C/24°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]     | 0,115    | 0,122    | 0,128    | 0,135    | 0,142    | 0,155    | 0,171   | 0,171 | 0,181 | 0,194 |
| Temp range II:                                                                                  | $\delta_{N0}$ -factor         | [mm/(N/mm²)]     | 0,092    | 0,095    | 0,096    | 0,098    | 0,099    | 0,102    | 0,106   | 0,106 | 0,109 | 0,113 |
| 72°C/50°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]     | 0,154    | 0,163    | 0,172    | 0,181    | 0,189    | 0,207    | 0,229   | 0,229 | 0,242 | 0,260 |
| Non-cracked con-                                                                                | crete C20/25                  | under static an  | d quasi  | -static  | action t | for a se | rvice li | fe of 10 | 0 years | ;     |       |       |
| Temp range I:                                                                                   | $\delta_{	extsf{N0}}$ -factor | [mm/(N/mm²)]     | 0,028    | 0,029    | 0,030    | 0,031    | 0,033    | 0,035    | 0,038   | 0,038 | 0,040 | 0,043 |
| 40°C/24°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]     | 0,028    | 0,030    | 0,031    | 0,032    | 0,033    | 0,036    | 0,039   | 0,039 | 0,041 | 0,043 |
| Cracked concrete C20/25 under static and quasi-static action for a service life of 100 years    |                               |                  |          |          |          |          |          |          |         |       |       |       |
| Temp range l:                                                                                   | $\delta_{N0}$ -factor         | [mm/(N/mm²)]     | 0,069    | 0,071    | 0,072    | 0,073    | 0,074    | 0,076    | 0,079   | 0,079 | 0,081 | 0,084 |
| 40°C/24°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]     | 0,115    | 0,122    | 0,128    | 0,135    | 0,142    | 0,155    | 0,171   | 0,171 | 0,181 | 0,194 |
|                                                                                                 |                               |                  |          |          |          |          |          |          |         |       |       |       |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$   $\tau$ . action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;

## Table C22: Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD)

|                                                                                                 | -                             |              |       |       |       |       |       |       |       |       |       |       |
|-------------------------------------------------------------------------------------------------|-------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Anchor size reinforcing bar                                                                     |                               |              |       | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 24  | Ø 25  | Ø 28  | Ø 32  |
| Non-cracked concrete C20/25 under static and quasi-static action for a service life of 50 years |                               |              |       |       |       |       |       |       |       |       |       |       |
| Temp range I:                                                                                   | $\delta_{N0}$ -factor         | [mm/(N/mm²)] | 0,008 | 0,009 | 0,009 | 0,01  | 0,011 | 0,012 | 0,013 | 0,013 | 0,014 | 0,015 |
| 40°C/24°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)] | 0,018 | 0,018 | 0,019 | 0,020 | 0,021 | 0,024 | 0,027 | 0,027 | 0,028 | 0,031 |
| Temp range II:                                                                                  | $\delta_{	extsf{N0}}$ -factor | [mm/(N/mm²)] | 0,009 | 0,011 | 0,011 | 0,012 | 0,013 | 0,014 | 0,015 | 0,015 | 0,016 | 0,018 |
| 72°C/50°C                                                                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)] | 0,048 | 0,051 | 0,054 | 0,058 | 0,061 | 0,068 | 0,076 | 0,076 | 0,081 | 0,088 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \cdot \tau; \qquad \quad \tau\text{: action bond stress for tension}$ 

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;

# Table C23: Displacements under shear load<sup>2)</sup> for all drilling methods

| Anchor size reinforcing bar                              |                            |         |      | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
|----------------------------------------------------------|----------------------------|---------|------|------|------|------|------|------|------|------|------|------|
| For concrete C20/25 under static and quasi-static action |                            |         |      |      |      |      |      |      |      |      |      |      |
| All temperature                                          | $\delta_{V0}$ -factor      | [mm/kN] | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 | 0,03 |
| ranges                                                   | $\delta_{V\infty}$ -factor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 | 0,04 | 0,04 |

<sup>2)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor  $\cdot$  V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

## VJ Technology Injection System XPE440 for concrete

## **Performances**

Displacements under static and quasi-static action (rebar)

Annex C 17



| Allelie                                         | or size threaded rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                         |            | M8                                              | M10              | M12     | M16       | M20      | M24     | M27     | M30                 |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|------------|-------------------------------------------------|------------------|---------|-----------|----------|---------|---------|---------------------|
| Steel 1                                         | ailure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                         |            | •                                               | •                |         |           |          |         |         |                     |
| Chara<br>(Seism                                 | cteristic tension resis<br>nic C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tance                 | N <sub>Rk,s,eq,C1</sub> | [kN]       | 1,0 • N <sub>Rk,s</sub>                         |                  |         |           |          |         |         |                     |
| (Seism<br>Steel,<br>Stainle                     | cteristic tension resis<br>nic C2)<br>strength class 8.8<br>ess Steel A4 and HCF<br>th class ≥70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                     | N <sub>Rk,s,eq,C2</sub> | [kN]       | performance 1,0 • N <sub>Rk,s</sub> performance |                  |         |           |          |         | perfor  | lo<br>mance<br>ssed |
| Partial                                         | factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | γ <sub>Ms,N</sub>       | [-]        |                                                 |                  | •       | see Ta    | able C1  |         | •       |                     |
| Comb                                            | ined pull-out and co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oncrete failure       |                         |            |                                                 |                  |         |           |          |         |         |                     |
|                                                 | cteristic bond resistar<br>holes (CD) and with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                         | d concrete | C20/25                                          | in ham           | nmer dr | rilled ho | oles (Hi | D), con | npresse | ed air              |
| ഉ                                               | I. 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | <sup>τ</sup> Rk,eq,C1   | [N/mm²]    | 7,0                                             | 7,0              | 8,5     | 8,5       | 8,5      | 8,5     | 8,5     | 8,5                 |
| Temperature<br>range                            | I: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet concrete and | <sup>τ</sup> Rk,eq,C2   | [N/mm²]    | NF                                              | PA <sup>1)</sup> | 5,8     | 4,8       | 5,0      | 5,1     | NF      | PA <sup>1)</sup>    |
| empe<br>ran                                     | II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flooded bore hole     | <sup>τ</sup> Rk,eq,C1   | [N/mm²]    | 6,0                                             | 6,0              | 7,0     | 7,0       | 7,0      | 7,0     | 7,0     | 7,0                 |
| μ̈                                              | II. 72 C/50 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THOIC .               | <sup>τ</sup> Rk,eq,C2   | [N/mm²]    | NF                                              | PA <sup>1)</sup> | 5,0     | 4,1       | 4,3      | 4,4     | NF      | PA <sup>1)</sup>    |
|                                                 | ction factor $\psi^0_{	extstyle 	$ |                       |                         | concrete C | 20/25                                           | in ham           | mer dı  | rilled he | oles (H  | ID), co | mpress  | sed ai              |
| Temperature range                               | l: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet concrete and | Ψ <sup>0</sup> sus      | [-]        |                                                 |                  |         | 0,        | 80       |         |         |                     |
| Temperar                                        | II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flooded bore<br>hole  | Ψ sus                   | [-]        | 0,68                                            |                  |         |           |          |         |         |                     |
| Increa                                          | sing factors for concr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ete ψ <sub>C</sub>    | C25/30 to               | C50/60     |                                                 |                  |         | 1         | ,0       |         |         |                     |
|                                                 | ete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                         |            |                                                 |                  |         |           |          |         |         |                     |
| Concr                                           | ant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                         |            |                                                 |                  |         | see Ta    | able C2  |         |         |                     |
| <b>Concr</b><br>Releva                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                         |            | 1                                               |                  |         |           | 11 00    |         |         |                     |
| Concr<br>Releva<br>Splitti                      | ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                         |            |                                                 |                  |         |           |          |         |         |                     |
| Concr<br>Releva<br>Splitti<br>Releva            | ng<br>ant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                         |            |                                                 |                  |         | see Ta    | able UZ  |         |         |                     |
| Concr<br>Releva<br>Splitti<br>Releva<br>Install | ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D: HDB CD)            |                         |            | 1                                               |                  |         |           | ,0       |         |         |                     |

| VJ Technology Injection System XPE440 for concrete                                                    |            |
|-------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1+C2) | Annex C 18 |



| Table C25: Characteristi (performance                                                                                              |                         |      |                                                           | unde                 | r seis | mic a  | ction                 |     |     |                  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|-----------------------------------------------------------|----------------------|--------|--------|-----------------------|-----|-----|------------------|
| Anchor size threaded rod                                                                                                           |                         |      | M8                                                        | M10                  | M12    | M16    | M20                   | M24 | M27 | M30              |
| Steel failure                                                                                                                      |                         |      |                                                           |                      |        |        |                       |     |     |                  |
| Characteristic shear resistance (Seismic C1)                                                                                       | V <sub>Rk,s,eq,C1</sub> | [kN] |                                                           |                      |        | 0,70   | ) • V <sup>0</sup> Rk | ,,s |     |                  |
| Characteristic shear resistance<br>(Seismic C2),<br>Steel, strength class 8.8<br>Stainless Steel A4 and HCR,<br>Strength class ≥70 | V <sub>Rk,s,eq,C2</sub> | [kN] | perfor                                                    | lo<br>mance<br>issed |        | 0,70 • | V <sup>0</sup> Rk,s   |     |     | ormance<br>assed |
| Partial factor                                                                                                                     | γ <sub>Ms,V</sub>       | [-]  |                                                           |                      |        | see    | Table C               | 21  |     |                  |
| Ductility factor                                                                                                                   | k <sub>7</sub>          | [-]  |                                                           |                      |        |        | 1,0                   |     |     |                  |
| Concrete pry-out failure                                                                                                           |                         |      |                                                           |                      |        |        |                       |     |     |                  |
| Factor                                                                                                                             | k <sub>8</sub>          | [-]  |                                                           |                      |        |        | 2,0                   |     |     |                  |
| Installation factor                                                                                                                | γ <sub>inst</sub>       | [-]  |                                                           |                      |        |        | 1,0                   |     |     |                  |
| Concrete edge failure                                                                                                              |                         | •    |                                                           |                      |        |        |                       |     |     |                  |
| Effective length of fastener                                                                                                       | I <sub>f</sub>          | [mm] | [mm] $\min(h_{ef}; 12 \cdot d_{nom})$ $\min(h_{ef}; 300)$ |                      |        |        |                       |     |     |                  |
| Outside diameter of fastener                                                                                                       | d <sub>nom</sub>        | [mm] | 8                                                         | 10                   | 12     | 16     | 20                    | 24  | 27  | 30               |
| Installation factor                                                                                                                | γ <sub>inst</sub>       | [-]  |                                                           |                      |        | •      | 1,0                   |     |     | •                |
| Factor for annular gap                                                                                                             | $\alpha_{\sf gap}$      | [-]  | [-] 0,5 (1,0) <sup>1)</sup>                               |                      |        |        |                       |     |     |                  |

<sup>&</sup>lt;sup>1)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

| VJ Technology Injection System XPE440 for concrete                                                  |            |
|-----------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1+C2) | Annex C 19 |



| Table C26: Characteristic va<br>(performance ca                                               |                         |            | oads   | und     | er se   | eismi    | c act    | ion                    |         |        |         |       |
|-----------------------------------------------------------------------------------------------|-------------------------|------------|--------|---------|---------|----------|----------|------------------------|---------|--------|---------|-------|
| Anchor size reinforcing bar                                                                   |                         | Ø8         | Ø 10   | Ø 12    | Ø 14    | Ø 16     | Ø 20     | Ø 24                   | Ø 25    | Ø 28   | Ø 32    |       |
| Steel failure                                                                                 |                         |            |        | •       |         |          |          |                        | •       | •      | •       |       |
| Characteristic tension resistance                                                             | N <sub>Rk,s,eq,C1</sub> | [kN]       |        |         |         |          | 1,0 • A  | s • f <sub>uk</sub>    | 1)      |        |         |       |
| Cross section area                                                                            | A <sub>s</sub>          | [mm²]      | 50     | 79      | 113     | 154      | 201      | 314                    | 452     | 491    | 616     | 804   |
| Partial factor                                                                                | γ <sub>Ms,N</sub>       | [-]        |        |         |         |          | 1,       | <b>4</b> <sup>2)</sup> |         |        |         |       |
| Combined pull-out and concrete fail                                                           | ıre                     |            |        |         |         |          |          |                        |         |        |         |       |
| Characteristic bond resistance in crack drilled holes (CD) and with hollow drill              |                         | cracked co | ncrete | C20/2   | 25 in h | amme     | r drille | d hole                 | s (HD)  | , comp | oresse  | d air |
| Dry, wet concrete and flooded bore hole                                                       | <sup>τ</sup> Rk,eq,C1   | [N/mm²]    | 7,0    | 7,0     | 8,5     | 8,5      | 8,5      | 8,5                    | 8,5     | 8,5    | 8,5     | 8,5   |
| ଧି ହ<br>ଆ: 72°C/50°C flooded bore<br>hole                                                     | <sup>τ</sup> Rk,eq,C1   | [N/mm²]    | 6,0    | 6,0     | 7,0     | 7,0      | 7,0      | 7,0                    | 7,0     | 7,0    | 7,0     | 7,0   |
| Reduction factor $\psi^0_{{\rm sus}}$ in cracked and drilled holes (CD) and with hollow drill |                         | ed concre  | te C20 | )/25 in | hamn    | ner dril | led ho   | les (H                 | D), cor | mpress | sed air |       |
| l: 40°C/24°C Dry, wet concrete and flooded bore                                               | \\<br>\0                | r.1        |        |         |         |          | 0,       | 80                     |         |        |         |       |
| I: 40°C/24°C Dry, wet concrete and flooded bore hole                                          | Ψ <sup>0</sup> sus      | [-]        |        |         |         |          | 0,       | 68                     |         |        |         |       |
| Increasing factors for concrete ψ <sub>C</sub>                                                | C25/30 to               | C50/60     |        |         |         |          | 1        | ,0                     |         |        |         |       |
| Concrete cone failure                                                                         | •                       |            |        |         |         |          |          |                        |         |        |         |       |
| Relevant parameter                                                                            |                         |            |        |         |         |          | see Ta   | ble C                  | 2       |        |         |       |
| Splitting                                                                                     |                         |            |        |         |         |          |          |                        |         |        |         |       |
| Relevant parameter see Table C2                                                               |                         |            |        |         |         |          |          |                        |         |        |         |       |
| Installation factor                                                                           |                         |            |        |         |         |          |          |                        |         |        |         |       |
| for dry and wet concrete (HD; HDB, CD                                                         | )<br>γ <sub>inst</sub>  | [-]        |        |         |         |          |          | ,0                     |         |        |         |       |
| for flooded bore hole (HD; HDB, CD)                                                           |                         | L J        |        |         |         |          | 1        | ,2                     |         |        |         |       |

 $<sup>^{\</sup>rm 1)}\,f_{uk}$  shall be taken from the specifications of reinforcing bars  $^{\rm 2)}$  in absence of national regulation

| VJ Technology Injection System XPE440 for concrete                                                 |            |
|----------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) | Annex C 20 |



| Table C27: Characteristic (performance                   |                         |       | oads    | unc  | ler s              | eism                 | ic a             | ction             | 1                  |      |                       |      |
|----------------------------------------------------------|-------------------------|-------|---------|------|--------------------|----------------------|------------------|-------------------|--------------------|------|-----------------------|------|
| Anchor size reinforcing bar                              |                         |       | Ø8      | Ø 10 | Ø 12               | Ø 14                 | Ø 16             | Ø 20              | Ø 24               | Ø 25 | Ø 28                  | Ø 32 |
| Steel failure                                            |                         |       |         |      |                    |                      |                  |                   |                    |      |                       |      |
| Characteristic shear resistance                          | V <sub>Rk,s,eq,C1</sub> | [kN]  |         |      |                    |                      | 0,35             | ·As               | f <sub>uk</sub> 1) |      |                       |      |
| Cross section area                                       | A <sub>s</sub>          | [mm²] | 50      | 79   | 113                | 154                  | 201              | 314               | 452                | 491  | 616                   | 804  |
| Partial factor                                           | γ <sub>Ms,V</sub>       | [-]   |         |      |                    |                      |                  | 1,5 <sup>2)</sup> |                    |      |                       |      |
| Ductility factor                                         | k <sub>7</sub>          | [-]   | 1,0     |      |                    |                      |                  |                   |                    |      |                       |      |
| Concrete pry-out failure                                 |                         | •     | •       |      |                    |                      |                  |                   |                    |      |                       |      |
| Factor                                                   | k <sub>8</sub>          | [-]   |         |      |                    |                      |                  | 2,0               |                    |      |                       |      |
| Installation factor                                      | γ <sub>inst</sub>       | [-]   |         |      |                    |                      |                  | 1,0               |                    |      |                       |      |
| Concrete edge failure                                    | •                       | '     | •       |      |                    |                      |                  |                   |                    |      |                       |      |
| Effective length of fastener                             | I <sub>f</sub>          | [mm]  |         | ı    | min(h <sub>e</sub> | <sub>ef</sub> ; 12 • | d <sub>nom</sub> | )                 |                    | min( | h <sub>ef</sub> ; 300 | mm)  |
| Outside diameter of fastener                             | d <sub>nom</sub>        | [mm]  | 8       | 10   | 12                 | 14                   | 16               | 20                | 24                 | 25   | 28                    | 32   |
| Installation factor                                      | γ <sub>inst</sub>       | [-]   | [-] 1,0 |      |                    |                      |                  |                   |                    |      |                       |      |
| actor for annular gap $\alpha_{gap}$ [-] $0.5 \ (1.0)^3$ |                         |       |         |      |                    |                      |                  |                   |                    |      |                       |      |

| VJ Technology Injection System XPE440 for concrete                                               |            |
|--------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1) | Annex C 21 |

 <sup>1)</sup> f<sub>uk</sub> shall be taken from the specifications of reinforcing bars
 2) in absence of national regulation
 3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.



| Table C28: Displa                                               | Table C28: Displacement under tension load <sup>1)</sup> (threaded rod) |              |       |       |       |       |       |       |       |       |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| Anchor size threaded rod M8 M10 M12 M16 M20 M24 M27 M3          |                                                                         |              |       |       |       |       |       |       |       |       |  |  |  |  |
| Non-cracked and cracked concrete C20/25 under seismic C1 action |                                                                         |              |       |       |       |       |       |       |       |       |  |  |  |  |
| Temperature range I:                                            | $\delta_{	extsf{N0}}	extsf{-factor}$                                    | [mm/(N/mm²)] | 0,069 | 0,071 | 0,072 | 0,074 | 0,076 | 0,079 | 0,081 | 0,082 |  |  |  |  |
| 40°C/24°C                                                       | $\delta_{N\infty}$ -factor                                              | [mm/(N/mm²)] | 0,193 | 0,115 | 0,122 | 0,128 | 0,135 | 0,142 | 0,155 | 0,171 |  |  |  |  |
| Temperature range II:<br>72°C/50°C                              | $\delta_{N0}$ -factor                                                   | [mm/(N/mm²)] | 0,092 | 0,095 | 0,096 | 0,099 | 0,102 | 0,106 | 0,109 | 0,110 |  |  |  |  |
|                                                                 | $\delta_{N\infty}$ -factor                                              | [mm/(N/mm²)] | 0,259 | 0,154 | 0,163 | 0,172 | 0,181 | 0,189 | 0,207 | 0,229 |  |  |  |  |

# Table C29: Displacements under tension load<sup>1)</sup> (rebar)

| Anchor size reinforcing bar                                     |                                              |              | Ø8    | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 24  | Ø 25  | Ø 28  | Ø 32  |
|-----------------------------------------------------------------|----------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Non-cracked and cracked concrete C20/25 under seismic C1 action |                                              |              |       |       |       |       |       |       |       |       |       |       |
| Temperature                                                     | $\delta_{	extsf{N0}}	extsf{-}	extsf{factor}$ | [mm/(N/mm²)] | 0,069 | 0,071 | 0,072 | 0,073 | 0,074 | 0,076 | 0,079 | 0,079 | 0,081 | 0,084 |
| range l:<br>40°C/24°C                                           | $\delta_{N\infty}$ -factor                   | [mm/(N/mm²)] | 0,115 | 0,122 | 0,128 | 0,135 | 0,142 | 0,155 | 0,171 | 0,171 | 0,181 | 0,194 |
| Temperature                                                     | $\delta_{N0}$ -factor                        | [mm/(N/mm²)] | 0,092 | 0,095 | 0,096 | 0,098 | 0,099 | 0,102 | 0,106 | 0,106 | 0,109 | 0,113 |
| range II:<br>72°C/50°C                                          | $\delta_{N\infty}$ -factor                   | [mm/(N/mm²)] | 0,154 | 0,163 | 0,172 | 0,181 | 0,189 | 0,207 | 0,229 | 0,229 | 0,242 | 0,260 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ 

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ; ( $\tau$ : action bond stress for tension)

# Table C30: Displacements under shear load<sup>2)</sup> (threaded rod)

| Anchor size threaded rod |                                                                                    |                  |        | M10    | M12  | M16  | M20  | M24  | M27  | M30  |
|--------------------------|------------------------------------------------------------------------------------|------------------|--------|--------|------|------|------|------|------|------|
| Non-cracked and          | cracked concrete C                                                                 | 20/25 under seis | mic C1 | action |      |      |      |      |      |      |
| All temperature          | $\delta_{ m V0}$ -factor                                                           | [mm/kN]          | 0,06   | 0,06   | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges                   | $\delta_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [mm/kN]          | 0,09   | 0,08   | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |

# Table C31: Displacements under shear load<sup>2)</sup> (rebar)

| Anchor size reinforcing bar                 |                            |         |      | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
|---------------------------------------------|----------------------------|---------|------|------|------|------|------|------|------|------|------|------|
| For concrete C20/25 under seismic C1 action |                            |         |      |      |      |      |      |      |      |      |      |      |
| All temperature                             | $\delta_{ m V0}$ -factor   | [mm/kN] | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 | 0,03 |
| ranges                                      | $\delta_{V\infty}$ -factor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 | 0,04 | 0,04 |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$ 

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V; (V: action shear load)

| VJ Technology Injection System XPE440 for concrete                           |            |
|------------------------------------------------------------------------------|------------|
| Performances Displacements under seismic C1 action (threaded rods and rebar) | Annex C 22 |

# Page 40 of European Technical Assessment ETA-20/0202 of 17 April 2020

English translation prepared by DIBt



| Table C33: Di                                                   | Table C33: Displacements under tension load (threaded rod)            |      |  |                |      |      |      |      |                 |  |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|------|--|----------------|------|------|------|------|-----------------|--|--|--|--|--|
| Anchor size threaded rod M8 M10 M12 M16 M20 M24 M27 M30         |                                                                       |      |  |                |      |      |      |      |                 |  |  |  |  |  |
| Non-cracked and cracked concrete C20/25 under seismic C2 action |                                                                       |      |  |                |      |      |      |      |                 |  |  |  |  |  |
| All temperature                                                 | All temperature δ <sub>N,C2(DLS)</sub> [mm] No 0,21 0,24 0,27 0,36 No |      |  |                |      |      |      |      |                 |  |  |  |  |  |
| ranges                                                          | δ <sub>N,C2(ULS)</sub>                                                | [mm] |  | mance<br>issed | 0,54 | 0,51 | 0,54 | 0,63 | perforr<br>assa |  |  |  |  |  |

# Table C34: Displacements under shear load (threaded rod)

| Anchor size threaded rod                                        |                      |      | M8              | M10 | M12 | M16 | M20 | M24  | M27  | M30           |
|-----------------------------------------------------------------|----------------------|------|-----------------|-----|-----|-----|-----|------|------|---------------|
| Non-cracked and cracked concrete C20/25 under seismic C2 action |                      |      |                 |     |     |     |     |      |      |               |
| All temperature                                                 | $\delta_{V,C2(DLS)}$ | [mm] | N               |     | 3,1 | 3,4 | 3,5 | 4,2  |      | lo            |
| ranges                                                          | $\delta_{V,C2(ULS)}$ | [mm] | perforr<br>assa |     | 6,0 | 7,6 | 7,3 | 10,9 | assa | mance<br>ssed |

| VJ Technology Injection System XPE440 for concrete                 |            |
|--------------------------------------------------------------------|------------|
| Performances Displacements under seismic C2 action (threaded rods) | Annex C 23 |