TSM High Performance

Material available in different versions

- zinc-plated steel
- zinc flake coating steel
- stainless steel A4
- stainless steel HCR

Base material

- reinforced and unreinforced normal concrete
- approval for concrete from C20/25 to C50/60
- cracked and non-cracked concrete

Product features

- quick and safe installation
- high load capacity
- can be loaded immediately
- adjustment possible
- fireproof (see below)

Applications

- fastening of high rack
- railing systems for bridge construction
- fire control plate fastening for tunnel construction

1343 TOGE Dübel GmbH & Co. KG 15

1343-CPR-M 561-7 / 11.14-DE ETA-15/0514 ETAG 001-01 / Option 1

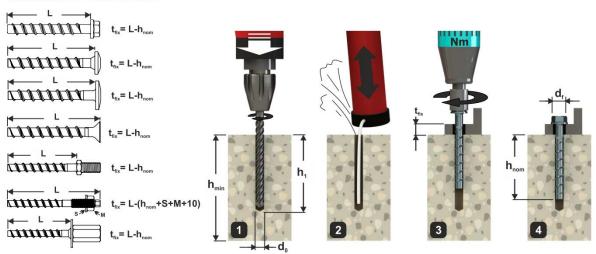
 zur Verankerung im gerissenen und ungerissenen Beton C 20/25 bis C 50/60

TSM / TSM A4 / TSM HCR 6 / 8 / 10 / 12 / 14

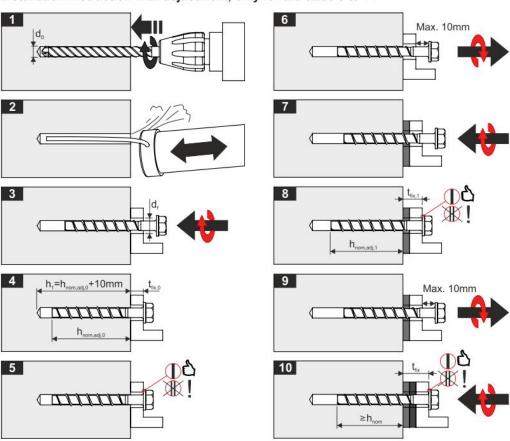
Single fastening

Technical characteristic without fire exposure for	single	fastening	TSM /	TSM A	4 / TSN	1 HCR										
Screw size TSM high performance			TSI	VI 6		TSM 8			TSM 10)		TSM 12	2		TSM 14	ı
nominal embedment depth	h _{nom} [mm]	h _{nom,1}	h _{nom,2}	h _{nom,1}	h _{nom,2}	h _{nom,3}	h _{nom,1}	h _{nom,2}	h _{nom,3}	h _{nom,1}	h _{nom,2}	h _{nom,3}	h _{nom,1}	h _{nom,2}	h _{nom,3}	
nonna embeament aepan	··nom	[]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
nominal diametrer of drill bit	d_0	[mm]	(5		8			10			12			14	
depth of drill hole	h ₁ r	min [mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125
effective anchorage depth	h_{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
diameter of clearance hole in the fixture	d _f ı	max [mm]	8	3		12			14			16			18	
permissible tension load in cracked concrete 1);2)	N _{zul}	[kN]	1,0	1,9	2,4	4,3	5,7	4,3	8,0	9,6	5,7	9,4	12,3	7,6	12,0	15,1
permissible shear load in cracked concrete 2);3)	Vzul	[kN]	3,0	4,0	3,5	4,8	6,4	4,8	15,9	19,2	6,1	18,8	24,0	7,6	24,1	30,3
perm. tension load in non-cracked concrete 1);2)	N _{zul}	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	12,0	7,6	13,2	17,2	10,6	17,0	21,2
perm. shear load in non-cracked concrete 2);3)	V _{zul}	[kN]	4,0	4,0	5,0	6,8	9,0	6,8	19,4	19,4	8,5	24,0	24,0	10,6	32,0	32,0
permissible bending resistance	Mzul	[kN]	6	,2		14,9			32,0			64,6			105,7	
minimum edge distance	C _{min}	[mm]	4	0	40	5	0		50		5	0	70	50	7	0
minimum spacing	S _{min}	[mm]	4	0	40	5	0		50		5	0	70	50	7	0
minimum base material thickness	h _{min}	[mm]	10	00	10	00	120	100	13	30	120	130	150	130	150	170
installation torque	T _{inst}	[Nm]	1	.0		20			40			60			80	
maximum torque (with Impact screw driver)		[Nm]	16	50		300			400			500			500	
ETA seismic C1	C1		>	,	>	(yes	,	Κ	yes	,	(yes	>	(yes

The partial safety factor for material resistance from the approval γM = 1.5 as well a partial safety factor for load actions γF = 1.4 were considered for determining the load These values apply without influence of the spacings and edge distances For the calculation of the permissible load a partial safety factor of γ_M=1,25 for steel failure was taken account.


technical characteristics under fire exposure for single fastening TSM, TSM A4 und TSM HCR) screw size TSM high performance TSM 6 TSM 8 TSM 10 TSM 12 nominal embedment depth	3 h _{nom,1} 75	100 8,8				
permissible load under tensile and shear use $(F_{zul,fi} = V_{zul,fi})$ fire resistance class	3,9	100				
permissible load under tensile and shear use $(F_{zul,fi} = V_{zul,fi})$ fire resistance class	3,9	100				
fire resistance class	+ -					
	+ -					
R30 F _{zul,fi30} [kN] 0,5 0,9 1,3 2,3 2,3 2,3 4,1 4,3 3,0 5,0 6,7	+ -	ا ہ ہ ا				
	2.0	0,0	9,1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3,9	8,2	8,2			
R 90 F _{zul,fi 90} [kN] 0,5 0,6 1,3 1,1 1,1 2,3 2,2 2,2 3,0 4,2 4,2	3,9	5,9	5,9			
R 120 F _{2ul,fi 120} [kN] 0,4 0,4 0,7 0,7 0,7 1,7 1,7 2,4 3,4 3,4	3,1	4,8	4,8			
R 30 permissible load M _{zul,fi30} [Nm] 0,7 2,4 5,9 12,3		20,4				
R 60 M _{zul,fi60} [Nm] 0,6 1,8 4,5 9,7		15,9				
R 90 M _{zul,fi90} [Nm] 0,5 1,2 3,0 7,0		11,6				
R 120 M _{2ul,fi 120} [Nm] 0,3 0,9 2,3 5,7		9,4				
edge distance						
R 30 bis R 120						
the edge distance must be at least 300 mm if the fire stress of more than one side attacks						
spacing						
R 30 bis R 120 S _{cr,fi} [mm] 2 x C _{cr,fi}						
concrete pry-out failure						
R 30 bis R 120 k [-] 1,0	[-] 1,0					
for wet concrete, the anchoring depth must be increased by at least 30 mm						

¹⁾ The partial safety factor for material resistance from the approval yM=1.0 as well a partial safety factor for load actions yF=1.0 were considered



Installation instruction:

Installation instruction with adjustment, only for the sizes 8 to 14

- -The anchor may be adjusted maximum two times while
- the anchor may turn back at most 10 mm.

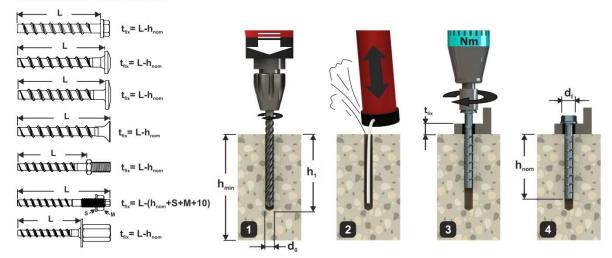
 -The total allowed thickness of shims added during the adjustment process is 10mm.

 -The final embedment depth after adjustment process must be equal or larger than hnom.

Multiple fastening

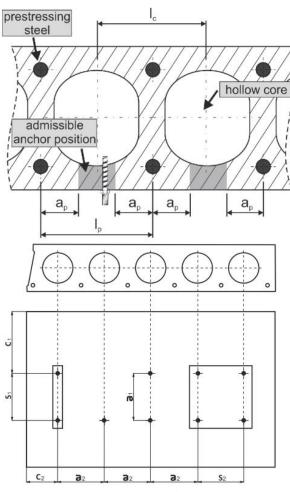
Technical characteristic without fire exposure for mu	ltiple fas	stening TSM / T	SM A4 / TSM F	ICR	
Screw size TSM high performance			TSM 5	TSI	VI 6
nominal embedment depth	h _{nom}	[mm]	35	35	55
nominal diametrer of drill bit	do	[mm]	5	6	
depth of drill hole	h ₁	min [mm]	40	40	60
effective anchorage depth	h _{ef}	[mm]	27	27	44
diameter of clearance hole in the fixture	d _f	max [mm]	7	7 8	
permissible tension load in cracked concrete 1);2)	N _{zul}	[kN]	0,6	0,6	3,6
permissible shear load in cracked concrete 2);3)	Vzul	[kN]	2,4	2,4	4
perm. tension load in non-cracked concrete 1);2)	N _{zul}	[kN]	0,6	0,6	3,6
perm. shear load in non-cracked concrete 2);3)	Vzul	[kN]	2,5	3,4	4
minimum edge distance	C _{min}	[mm]	35	35	40
minimum spacing	S _{min}	[mm]	35	35	40
minimum base material thickness	h _{min}	[mm]	80	80	100
installation torque	T _{inst}	[Nm]	8	10	
maximum torque (with Impact screw driver)		[Nm]	140	160	

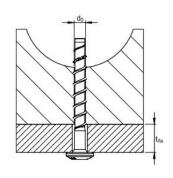
¹⁾The partial safety factor for material resistance from the approval γM = 1.5 as well a partial safety factor for load actions γF = 1.4 were considered for determining the load.
²⁾These values apply without influence of the spacings and edge distances.
³⁾For the calculation of the permissible load a partial safety factor of γ_M=1,25 for steel failure was taken account.


technical ch	aracteristics under fire expos	sure for multiple	fastening TS	M / TSM A4 /	TSM HCR		
screw size T	SM high performance	TSI	M 6	TSM 6 A4 / HCR			
nominal em	bedment depth	h _{nom}	[mm]	35 55		35	55
permissible l	oad under tensile and shear us		zul,fi)				
fire resistan	ce class						
R 30		F _{zul,fi 30}	[kN]	0,4	0,9	0,4	1,2
R 60	permissible load	F _{zul,fi60}	[kN]	0,4	0,8	0,4	1,2
R 90		F _{zul,fi90}	[kN]	0,4	0,6	0,4	1,2
R 120		F _{zul,fi 120}	[kN]	0,3	0,4	0,3	0,8
R 30		M _{zul,fi30}	[Nm]	0,7		0,9	
R 60		M _{zul, fi 60}	[Nm]	0,6		0,9	
R 90		M _{zul,fi90}	[Nm]	0,5		0,9	
R 120		M _{zul,fi 120}	[Nm]	0	,3	0,6	
edge distan	се						
R 30 bis R 12	R 30 bis R 120						
the edge dis	tance must be at least 300 m		ess of more th	an one side	attacks		
spacing							
R 30 bis R 120 S _{cr,fi} [mm] 2 x C _{cr,fi}							
concrete pry	-out failure						
R 30 bis R 12	0	k	[-]		1	,0	
for wet cond	rete, the anchoring depth m	ust be increased	by at least 3	0 mm			

¹⁾ The partial safety factor for material resistance from the approval γM=1.0 as well a partial safety factor for load actions γF=1.0 were considered.

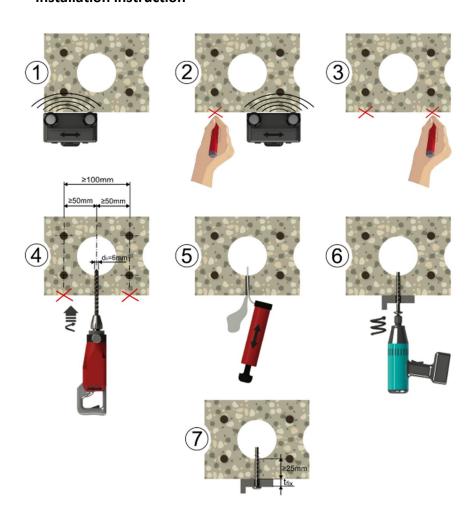
Installation instruction:





Multiple fastening in hollow core slabs

Technical characteristics without fire exposure in pre	stresse	d holld	w core sla	abs TSM / 1	rsm a4/tsm	HCR
screw size TSM high performance					TSM 6	
bottom flange thickness	d _b		[mm]	min 25	min 30	min 35
nominal diameter of drill bit	d_0		[mm]		6	
depth of drill hole	h ₁	min	[mm]	30	35	40
clearance hole diameter	d_f	max	[mm]		8	
permissible tension load	F _{zul}		[kN]	0,4	0,8	1,2
minimum edge distance	C _{min}		[mm]		100	-
minimum spacing			[mm]	100		
minimum distance between anchor groups			[mm]		100	
core distance		min	[mm]	100		
prestressing steel distance		min	[mm]	100		
dist. between anchor position & prestressing steel		min	[mm]	50		
hollow core width (w) bridge width (e)	(w/e)	max	[mm]		4,2	
installation torque	T _{inst}		[Nm]		10	
max. torque (for impact screw driver)			[Nm]		160	


 C_1 , C_2 = edge distance S_1 , S_2 = anchor spacing

a₁, a₂ = distance between anchor groups

Installation instruction

- 1-3 locate prestressing steel with the reinforcement bar detector and mark the location
- 4- create hole in the permissible anchoring area
- 5- clean hole
- 6- screw in the concrete screw
- 7- screw head must fully contact the fixture

recommended impact screw driver

screw size	Recommended impact wrench					
	Milwaukee C 12 IW (1/2" drive, battery, max. torque 136 Nm)					
TSM 5	Milwaukee C 12ID (TORX drive, battery, max. torque 96 Nm)					
	Würth ASS 10-A (1/2" drive, battery, max. torque 105 Nm)					
	Milwaukee C 12 IW (1/2" drive, battery, max. torque 136 Nm)					
TSM 6	Milwaukee C 12ID (TORX drive, battery, max. torque 96 Nm)					
131010	DeWalt DEDC 840 KB (1/2" drive, battery, max. torque 160 Nm)					
	Würth ASS 14 (1/4" drive, battery, max. torque 136 Nm 150 Nm)					
	Milwaukee C 18 IW (1/2" drive, battery, max. torque 250 Nm)					
	Bosch GDS 18E (1/2" drive, AC power, max. torque 250 Nm)					
TSM 8 - TSM 10	Makita 6905H (1/2" drive, AC power, max. torque 300 Nm)					
	Würth ASS 18 (1/2" drive, battery, max. torque 180 Nm)					
	Würth ESS (1/2" drive, AC power, max. torque 250 Nm)					
	Milwaukee HD 28 IW (1/2" drive, battery, max. torque 440 Nm)					
	Bosch GDS 18E (1/2" drive, AC power, max. torque 250 Nm)					
TSM 12 - TSM 14	Makita 6905H (1/2" drive, AC power, max. torque 300 Nm)					
	Würth ASS 18 HT (1/2" drive, battery, max. torque 610 Nm)					
	Würth ESS (1/2" drive, AC power, max. torque 250 Nm)					

