

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0557 of 23 September 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Chemofast Injection system STVK Pro or STVK NORDIC Pro

Metal Injection anchors for use in masonry

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

66 pages including 3 annexes which form an integral part of this assessment

EAD 330076-00-0604, Edition 11/2017

European Technical Assessment ETA-20/0557

Page 2 of 66 | 23 September 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z55940.20 8.06.04-595/20

European Technical Assessment ETA-20/0557

Page 3 of 66 | 23 September 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Chemofast Injection System STVK Pro or STVK NORDIC Pro is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar STVK Pro or STVK NORDIC Pro, a perforated sleeve and an anchor rod with hexagon nut and washer or an Internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European **Assessment Document**

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for its assessment 3

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance	See Annexes C 1 to C 48
Displacements	See Annex C 6 to C 48
Durability	See annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with 4 reference to its legal base

In accordance with the European Assessment Document EAD 330076-00-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

Z55940.20 8.06.04-595/20

European Technical Assessment ETA-20/0557

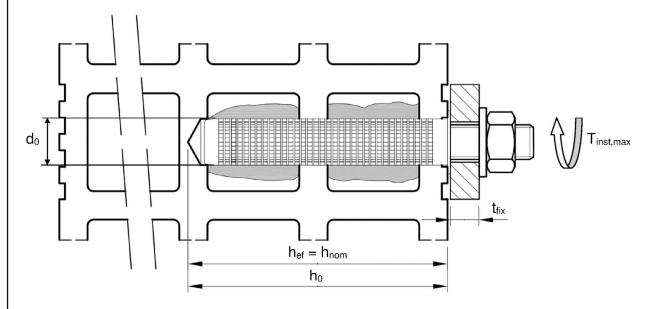
Page 4 of 66 | 23 September 2020

English translation prepared by DIBt

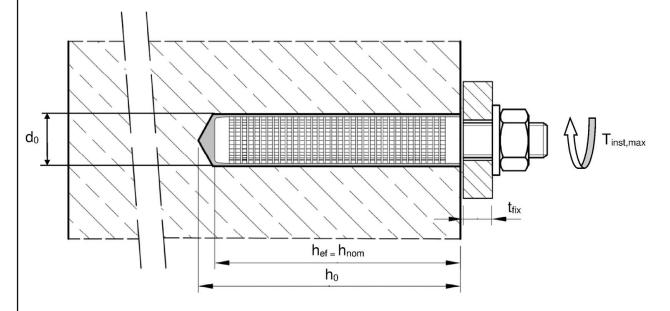
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 September 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

*beglaubigt.*Baderschneider


Z55940.20 8.06.04-595/20

Installation in hollow brick; threaded rod and Internal threaded rod with sleeve

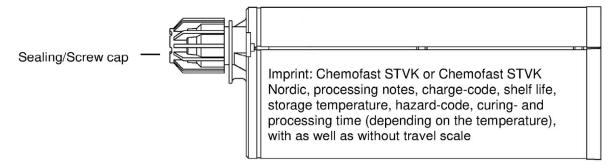
Installation in solid brick; threaded rod and Internal threaded rod with or without sleeve

 $h_{ef} = h_{nom}$ = effective anchorage depth d_0 = nominal drill hole diameter

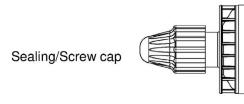
 h_0 = drill hole depth $T_{inst,max}$ = Max installation torque moment

 t_{fix} = thickness of fixture

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Product description Installed condition	Annex A 1


Cartridge: Chemofast STVK or Chemofast STVK Nordic

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml Cartridge: (Type: coaxial)



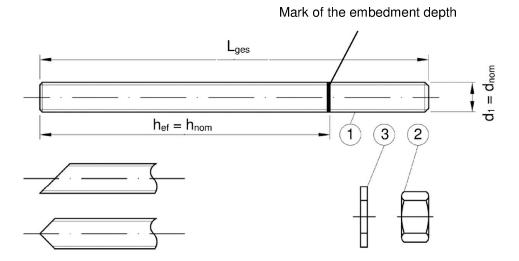
Imprint: Chemofast STVK or Chemofast STVK Nordic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml Cartridge (Type: "side-by-side")

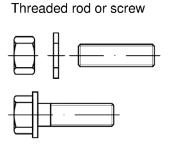
165 ml and 300 ml Cartridge (Type: "foil tube")

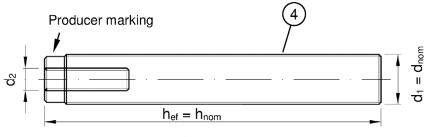
Imprint: Chemofast STVK or Chemofast STVK Nordic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static mixer


CRW 14W

Chemofast Injection System STVK Pro or STVK NORDIC Pro Product description Injection system Annex A 2


Threaded Rod M8, M10, M12, M16



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Internal threaded rod IG-M6, IG-M8, IG-M10

Producer marking: e.g. \(\) M8

Marking Internal thread

Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Product description Anchor rods	Annex A 3

	le A1: Materials				
	Designation	Material		1. (2222.222.1)	
		l acc. to EN 10087:1998 i µm = acc. to EN ISO 4			
h	ot-dip galvanised ≥ 4		461:20	09 and EN ISO 10684:2004+A0	C:2009 or
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength
1 Threaded rod		4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	
	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²
	acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{VK} = 300 N/mm ²	
		EN 130 696-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{VK} = 400 N/mm ²
			8.8	f _{uk} = 800 N/mm²	f _{VK} = 640 N/mm ²
			4	for anchor rod class 4.6 or 4.8	, ,
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for anchor rod class 5.6 or 5.8	
			8	for anchor rod class 8.8	
3	Washer			vanised or sherardized	000 or EN ISO 7004-2000
		Property class	υ, ⊏IN I	SO 7089:2000, EN ISO 7093:20 Characteristic steel ultimate tensile strength	Characteristic steel yield strength
4	Internal threaded anchor rod		5 Ω	$f_{UK} = 500 \text{ N/mm}^2$	f _{VK} = 400 N/mm ²
		acc. to EN ISO 898-1:2013	8.8	f _{UK} = 800 N/mm ²	f _{VK} = 640 N/mm ²
Stai	place stool A2 (Mat			1.4567 or 1.4541, acc. to EN 1	1 7
Stai	nless steel A4 (Mat	erial 1.4401 / 1.4404 / 1	.4571 /	1.4362 or 1.4578, acc. to EN 1	0088-1:2014)
					41
nıgı		,	29 01 1	.4565, acc. to EN 10088-1: 201 Characteristic steel ultimate	
пıgı		Property class	29 UI I	Characteristic steel ultimate tensile strength	Characteristic steel yield strength
<u>піді</u> 1		Property class	50	Characteristic steel ultimate	Characteristic steel yield
	Threaded rod 1)	Property class acc. to		Characteristic steel ultimate tensile strength	Characteristic steel yield strength
		Property class	50	Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$
		Property class acc. to EN ISO 3506-1:2009	50	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm²
		Property class acc. to EN ISO 3506-1:2009 acc. to	50 70 80 50 70	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70	Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm²
1	Threaded rod 1)	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	50 70 80 50 70 80	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70 for anchor rod class 80	Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²
1	Threaded rod 1)	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529	50 70 80 50 70 80 1.4307 1.4404 or 1.45	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ c. to EN 10088-1:2014 c. to EN 10088-1:2014
1 2	Threaded rod ¹⁾ Hexagon nut ¹⁾	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200	50 70 80 50 70 80 1.4307 1.4404 or 1.45	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, \text{ acc}$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, $	Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm² c. to EN 10088-1:2014 c. to EN 10088-1:2014 Characteristic steel yield
1 2 3	Threaded rod ¹⁾ Hexagon nut ¹⁾	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, acc$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, acc$ $/ 1.4571 / 1.4362, acc$ $/ 1.4571 / 1.4362, acc$ $/ 1.4571 / 1.4362, acc$ $/ 1.45$	Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm² c. to EN 10088-1:2014 c. to EN 10088-1:2014 C. to EN 10088-1:2014 Characteristic steel yield strength
1 2	Threaded rod 1) Hexagon nut 1) Washer	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to	50 70 80 50 70 80 1.4307 1.4404 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, acc$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, acc$ $/ 565, acc. to EN 10088-1: 2014$ $/ 500 7089: 2000, EN ISO 7093: 2000$ $/ 1.4311 / 1.4362 \text{ or } 1.4578, acc$ $/ 1.4571 $	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ e. to EN 10088-1:2014 e. to EN 10088-1:2014 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$
1 2 3	Threaded rod 1) Hexagon nut 1) Washer Internal threaded anchor rod 1)	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, acc$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, acc$ $/ 1.4571 / 1.4362, acc$ $/ 1.4571 / 1.4362, acc$ $/ 1.4571 / 1.4362, acc$ $/ 1.45$	Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm² c. to EN 10088-1:2014 c. to EN 10088-1:2014 C. to EN 10088-1:2014 Characteristic steel yield strength
1 2 3	Threaded rod 1) Hexagon nut 1) Washer Internal threaded anchor rod 1)	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, acc$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, acc$ $/ 565, acc. to EN 10088-1: 2014$ $/ 500 7089: 2000, EN ISO 7093: 2000$ $/ 1.4311 / 1.4362 \text{ or } 1.4578, acc$ $/ 1.4571 $	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ e. to EN 10088-1:2014 e. to EN 10088-1:2014 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$
1 2 3 4 Plas	Threaded rod 1) Hexagon nut 1) Washer Internal threaded anchor rod 1) Property class 80 only fortic sleeve	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, \text{ acc}$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, \text{ acc}$ $/ 65, \text{ acc. to EN 10088-1: 2014}$ $SO 7089:2000, \text{ EN ISO 7093:20}$ $Characteristic steel ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ e. to EN 10088-1:2014 e. to EN 10088-1:2014 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$
1 2 3 4 Plas	Threaded rod 1) Hexagon nut 1) Washer Internal threaded anchor rod 1)	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, acc$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, acc$ $/ 565, acc. to EN 10088-1: 2014$ $/ 500 7089: 2000, EN ISO 7093: 2000$ $/ 1.4311 / 1.4362 \text{ or } 1.4578, acc$ $/ 1.4571 $	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ e. to EN 10088-1:2014 e. to EN 10088-1:2014 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$
1 2 3 4 Plas	Threaded rod 1) Hexagon nut 1) Washer Internal threaded anchor rod 1) Property class 80 only fortic sleeve	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, \text{ acc}$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, \text{ acc}$ $/ 65, \text{ acc. to EN 10088-1: 2014}$ $SO 7089:2000, \text{ EN ISO 7093:20}$ $Characteristic steel ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ e. to EN 10088-1:2014 e. to EN 10088-1:2014 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$
1 2 3 4 Perf	Threaded rod 1) Hexagon nut 1) Washer Internal threaded anchor rod 1) Property class 80 only fitic sleeve orated sleeve	Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200 Property class acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 1.4307 1.4404 or 1.45 6, EN I	Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 50$ $for anchor rod class 70$ $for anchor rod class 80$ $/ 1.4311 / 1.4567 \text{ or } 1.4541, acc$ $/ 1.4571 / 1.4362 \text{ or } 1.4578, acc$ $/ 365, acc. to EN 10088-1: 2014$ SO 7089:2000, EN ISO 7093:20 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ Polypropylene (PP)	Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ e. to EN 10088-1:2014 e. to EN 10088-1:2014 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$

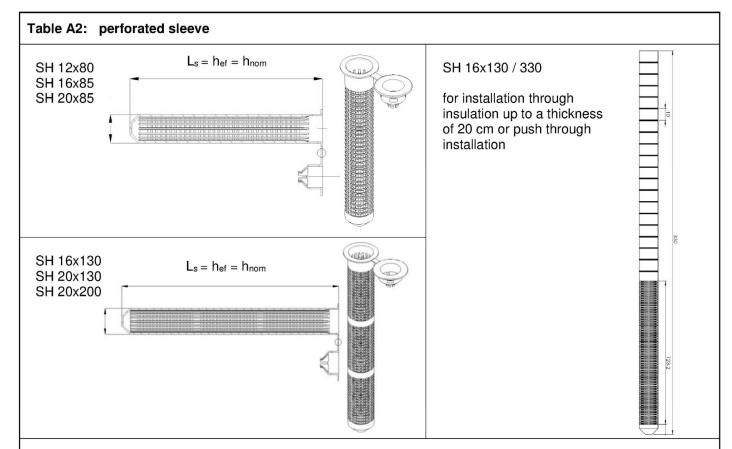


Table A3: sleeve dimensions

	sleeve							
size	ds	L_{s}	$h_{ef} = h_{nom}$					
[mm]	[mm]	[mm]	[mm]					
SH 12x80	12	80	80					
SH 16x85	16	85	85					
SH 16x130	16	130	130					
SH 16x130 / 330 ¹⁾	16	330	130					
SH 20x85	20	85	85					
SH 20x130	20	130	130					
SH 20x200	20	200	200					

¹⁾ In annex C4 – C48 this sleeve is covered with the SH 16x130

Table A4: Steel parts

	Anchor Rod								
Size	$d_1 = d_{nom}$	d_2	l _{ges}						
[mm]	[mm]	[mm]	[mm]						
IG-M6 1)	10	6	with sleeve: hef - 5mm						
IG-M8 1)	12	8	with sleeve. Her - 5HHH without sleeve: hef						
IG-M10 1)	16	10	without sleeve. Her						
M8	8	-	hef + t _{fix} + 9,5						
M10	10	-	hef + t _{fix} + 11,5						
M12	12	-	hef + t _{fix} + 17,5						
M16	16	-	hef + t _{fix} + 20,0						

¹⁾ Internal threaded rod with metric external thread

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Product description Sleeves	Annex A 5

Specifications of intended use

Anchorages subject to:

Static and guasi-static loads

Base materials:

- Autoclaved Aerated Concrete (Use condition d) according to Annex B2
- Solid brick masonry (Use condition b), according to Annex B2.
- Hollow brick masonry (Use condition c), according to Annex B2 and B3
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow masonry or in autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests according to EOTA TR 053, Edition April 2016 under consideration of the β-factor according to Annex C1, Table C1.

Temperature Range:

- T_a: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- T_b: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- T_c: 40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use conditions in respect of installation and use:

- Condition d/d: Installation and use in dry masonry
- Condition w/w: Installation and use in dry or wet masonry (incl. w/d installation in wet masonry and use in dry masonry)

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transwithted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
 - The anchorages are designed in accordance with the EOTA TR 054, Edition April 2016, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
- N_{Rk,p} = N_{Rk,b} see Annex C4 to C48; N_{Rk,s} see Annex C2; N_{Rk,pb} see EOTA TR 054, Edition April 2016
- V_{Rk,b} see Annex C4 to C48; V_{Rk,s} see Annex C2; V_{Rk,c} see Annex C3; V_{Rk,pb} see EOTA TR 054, Edition April 2016
- For application with sleeve with drill bit size ≤ 15mm installd in joints not filled with mortar:
 - \circ N_{Rk,p,i} = 0,18 * N_{Rk,p} and N_{Rk,b,i} = 0,18 * N_{Rk,b} (N_{Rk,p} = N_{Rk,b} see Annex C4 to C48)
- Application without sleeve installd in joints not filled with mortar is not allowed.

Installation:

- Dry or wet structures.
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Intended use Specifications	Annex B 1

ight concrete brick	M8 - M16 C: IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C4 - C6	solid light weigh VBL ρ≥ 0,6	t concrete brick EN	M16 IG-M10	12x80 16x85 16x130	2015
ight concrete brick	9W-SI k acc.	16x85 16x130 20x85 20x130 20x200	_			M16 IG-M10	16x85	C4
ight concrete bric		to EN 77		≥240x300x113	Annual Area Care	M8 - IG-M6 -	20x85 20x130 20x200	- C4
23	10		1-3:20)11+A1:2015		1		
	M8 - M16 IG-M6 - IG-M10	16x85 16x130 20x85 20x130 20x200		Bloc creux B40 ρ ≥ 0,8 495x195x190		M8 - M16 IG-M6 - IG-M10	16x130 20x130	C4 - C4
oricks acc. to EN 7		011+A1:2	2015			T		
	M8 – M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C7 - C8	KSL-3DF ρ≥1,4 240x175x113		M8 - M16 IG-M6 - IG-M10	16x85 16x130 20x85 20x130	C: - C1
A	M8-M16 IG-M6 - IG-M10	16x130 20x130 20x200	-	KSL-12DF ρ≥1,4 498x175x238		M8 - M16 IG-M6 - IG-M10	16x130 20x130	C1 - C1
s acc. to EN 771-1	:2011+	A1:2015						
	M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C15 - C16	Mz – 2 DF $\rho \ge 2,0$ ≥ 240x115x113		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C1 - C1
ction System STV	K Pro o	or STVK	NORE	DIC Pro				
	s acc. to EN 771-1	Pricks acc. to EN 771-2:2 91W-8W 91W-8V 91W-8V	## 12x80 12x80 16x85 16x130 20x85 20x130 20x200 16x130 20x200 16x130 20x200 16x130 20x200 16x130 20x200 16x130 20x200 20x200	Pricks acc. to EN 771-2:2011+A1:2015 12x80	Pricks acc. to EN 771-2:2011+A1:2015 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pricks acc. to EN 771-2:2011+A1:2015 20	Pricks acc. to EN 771-2:2011+A1:2015	12x80

naming density [kg/dm³] dimensions LxBxH [mm]	picture	anchor rods	perforated sleeve	Annex	naming density [kg/dm³] dimensions LxBxH [mm]	picture	anchor rods	perforated sleeve	Annex
Hollow clay br	icks acc. to EN 771 □		1+A1:201	15				Τ	
HIz-10DF ρ ≥ 1,25 300x240x249		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C19 - C20	Porotherm Homebric $\rho \ge 0.7$ $500x200x299$		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C21 - C22
BGV Thermo ρ≥ 0,6 500x200x314		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C23 - C24	Brique creuse $C40$ $\rho \ge 0.7$ $500x200x200$		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C29 - C30
Calibric R+ ρ ≥ 0,6 500x200x314		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C25 - C26	Blocchi Leggeri ρ≥ 0,6 250x120x250		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C31 - C32
Urbanbric ρ ≥ 0,7 560x200x274		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C27 - C28	Doppio Uni ρ≥ 0,9 250x120x120		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C33 - C34
Hollow Clay br	ick withintegrated	insulat	ion acc.	to EN	771-1:2011+A1:	2015			
Coriso WS07 $\rho \ge 0,55$ 248x365x249 rock wool		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C35 - C36	T8P ρ ≥ 0,56 248x365x249 perlite		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C39 - C40
T7MW ρ ≥ 0,59 248x365x249 rock wool		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C37 - C38	MZ90-G ρ ≥ 0,68 248x365x249 rock wool		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C41 - C42
Intended Use	Chemofast Injection System STVK Pro or STVK NORDIC Pro							В 3	

Installation: steel brush RBT

Table B2: Installation parameters in autoaerated concrete AAC and solid masonry (without sleeve)

Anchor size		M8	M10	IG-M6	M12	IG-M8	M16	IG-M10		
nominal drill hole diameter	d ₀	[mm]	10	1	2	1	14 18			
drill hole depth	h ₀	[mm]	80	80 90 100				11	100	
effective anchorage depth	h _{ef}	[mm]	80 90 100					1	100	
minimum wall thickness	h _{min}	[mm]				h _{ef} + 30				
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12 7		14	9	18	12	
Brush			RBT10 RBT12 RBT14 RBT18					T18		
Diameter of steel brush	d _b ≥	[mm]	10,5	12	2,5	14	1,5	18,5		

Table B3: Installation parameters in solid and hollow masonry (with sleeve)

Anchor size				М8	M8 /	M10 / IC	G-M6		M16 / IG- G-M10	M8 /
		sl	eeve SH	12x80	16x85	16x130	16x130/330	20x85	20x130	20x200
nominal drill ho	ole diameter	d ₀	[mm]	12	16	16	16	20	20	20
drill hole depth		h ₀	[mm]	85	90	135	330	90	135	205
effective ancho	orage depth	h _{ef}	[mm]	80	85	130	130	85	130	200
minimum wall	thickness	h _{min}	[mm]	115	115	195	195	115	195	240
Diameter of clearance	prepositioned installation	d _f ≤	[mm]	9		7 (IG-M6) 18) / 12 (N		9 (IG-M8) / 12 (IG-M10 14 (M12) / 18 (M16)		
hole in the fixture	push through installation	d _f ≤	[mm]	14	18			22		
Brush		_		RBT12		RBT16		RBT20		
Diameter of ste	eel brush	d₀	[mm]	12,5		16,5			20,5	

Hand pump (Volume 750 ml)

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Intended Use Installation parameters and cleaning brush	Annex B 4

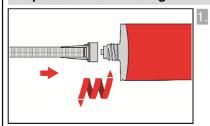
Table B4:	Maximum working time and minimum curing time
	Chemofast STVK

Temperature in the base material T	Temperature of cartridge	Gelling- / working time	Minimum curing time in dry base material 1)
0°C bis + 4 °C		45 min	7 h
+ 5 °C bis + 9 °C		25 min	2 h
+ 10 °C bis + 19 °C		15 min	80 min
+ 20 °C bis + 29 °C	+5°C bis +40°C	6 min	45 min
+ 30 °C bis + 34 °C		4 min	25 min
+ 35 °C bis + 39 °C		2 min	20 min
+ 40°C		1,5 min	15 min

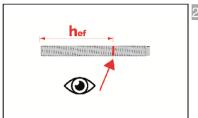
¹⁾ In wet base material the curing time <u>must</u> be doubled

Table B5: Maximum working time and minimum curing time Chemofast STVK Nordic

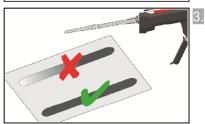
Temperature in the base material T	Temperature of cartridge	Gelling- / working time	Minimum curing time in dry base material 1)
0 °C bis + 4 °C		10 min	2,5 h
+ 5 °C bis + 9 °C	-20°C bis +10°C	6 min	80 min
+ 10°C		6 min	60 min


¹⁾ In wet base material the curing time <u>must</u> be doubled

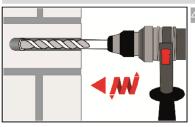
Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Intended Use Gelling and curing times	Annex B 5



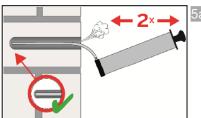
Installation Instructions


Preparation of cartridge

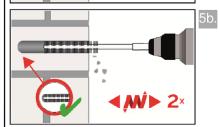
Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 and B5) as well as for new cartridges, a new static-mixer shall be used.



The position of the embedment depth shall be marked on the threaded rod.



Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

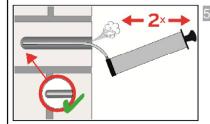

Installation in solid masonry (without sleeve)

Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 – C48, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.

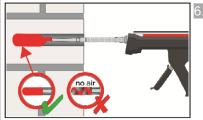
Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B4) a minimum of two times.

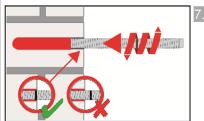
Attach an appropriate sized wire brush $> d_{b,min}$ (Table B2) to a drill or a cordless screwdriver and brush the hole clean with a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

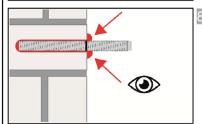
Chemofast Injection System STVK Pro or STVK NORDIC Pro

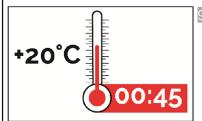

Intended Use

Installation instructions Solid masonry and Autoclaved Aerated Concrete


Annex B 6


Installation instructions (continuation)

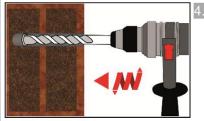

Finally blow the hole clean again with handpump (Annex B4) a minimum of two times


Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B4 + B5.

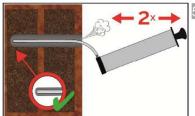
Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

Be sure that the anular gap is fully filled with mortar. For push through installation the hole in the fixture must also be fully filled with mortar. If no excess mortar is visible at the top of the hole, the application has to be renewed.

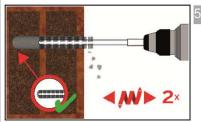
Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 + B5).

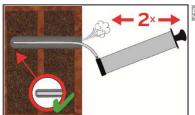

After full curing, the fixture can be installed with up to the max. installation torque (See parameters of brick Annex C4 to Annex C48) by using a calibrated torque wrench.

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Intended Use	Annex B 7
Installation instructions Solid masonry and Autoclaved Aerated Concrete	

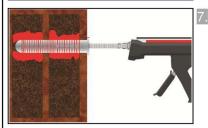


Installation instructions (continuation)


Installation in solid and hollow masonry (with sleeve)

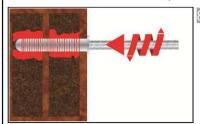

Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 - C48, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.

Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B4) a minimum of two times.

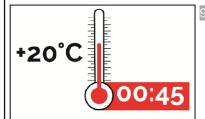

Attach an appropriate sized wire brush $> d_{b,min}$ (Table B3) to a drill or a cordless screwdriver and brush the hole clean with a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

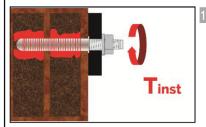
Finally blow the hole clean again with handpump (Annex B4) a minimum of two times

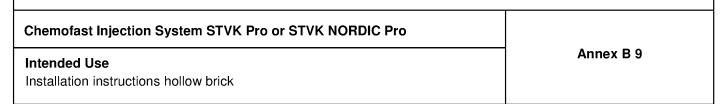
Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve. For installation through insulation the sleeve SH 16x130/330 shall be cutted at the top end according to the insulation thickness.



Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions. For push through installation the sleeve within the fixture must also be fully filled with mortar. Observe the gel-/ working times given in Table B4 + B5.


Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Intended Use Installation instructions hollow brick	Annex B 8


Installation instructions (continuation)

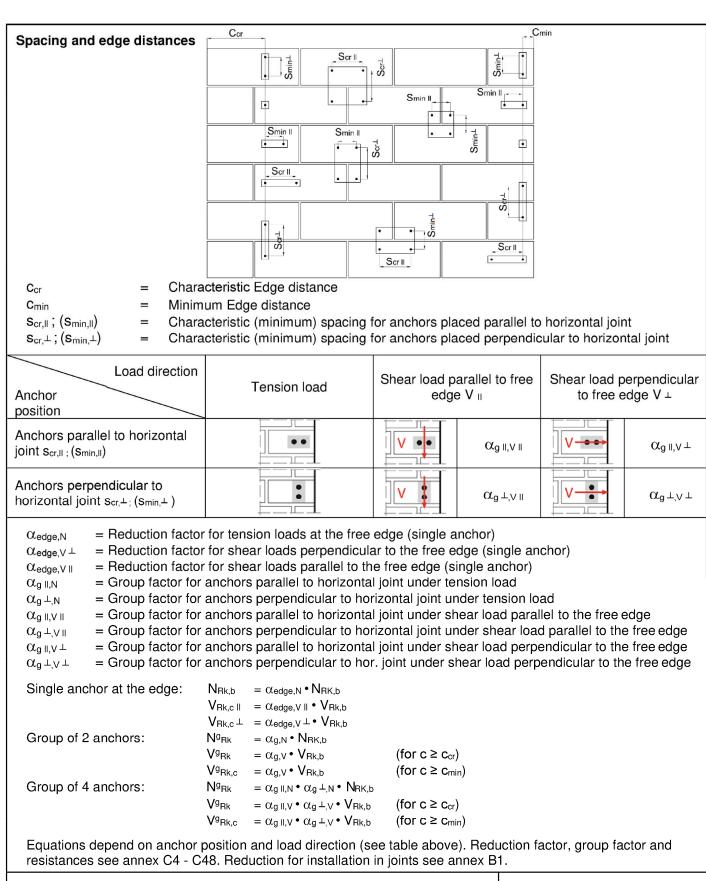

Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 + B5).

After full curing, the fixture can be installed with up to the max. installation torque (See parameters of brick Annex C4 to Annex C48) by using a calibrated torque wrench.

able C1: β-factor for job	-site testing under i	ension load	aing							
				β-Fa	actor					
base material	anchor size	T _a : 40°C / 24°C				T _c : 120°	C / 72°C			
		d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w			
Autoclaved aerated concrete	all sizes	0,95	0,86	0,81	0,73	0,81	0,73			
Calaium ailian briaka	d₀ ≤ 14 mm	0,93	0,80	0,87	0,74	0,65	0,56			
Calcium silica bricks	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65			
Clay Bricks	all sizes	0,86	0,86	0,86	0,86	0,73	0,73			
Conorata brioka	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56			
Concrete bricks	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65			

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances C feeters for ich eite teeting under tension leed	Annex C 1
β-factors for job site testing under tension load	



Anchor size			IG-M6	IG-M8	IG-M10	М8	M10	M12	M16
Characteristic tension resistance			'		'		•		
stool proporty place 4.6	N _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	15	23	34	63
steel, property class 4.6	γMs	[-]		_ 1)				,0	
steel, property class 4.8	N _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	15	23	34	63
Steel, property class 4.0	γMs	[-]		_ 1)				,5	
steel, property class 5.6	N _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	18	29	42	79
	γMs	[-]		_ 1)		- 10		,0	
steel, property class 5.8	N _{Rk,s}	[kN]	10	17	29	18	29	42	79
	γMs	[-]	10	1,5	40	00		,5	100
steel, property class 8.8	$N_{Rk,s}$	[kN]	16	27	46	29	46	67 ,5	126
Stainless stool M4 / HCD, property	γMs N Rk,s	[-] [kN]	14	1,5 26	41	26	41	,5 59	110
Stainless steel A4 / HCR, property class 70		[-]	14	1,87	41	20		<u>59</u> 87	110
Stainless steel A4 / HCR, property	γMs N _{Rk,s}	[kN]	16	29	46	29	46	67	126
class 80	γMs	[-]	10	1,6	1 70			,6	120
Characteristic shear resistance) y IVIS			1,0			<u>'</u>	,0	
Onaracteristic shear resistance	V _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	7	12	17	31
steel, property class 4.6	γ nk,s γMs	[-]	,	_ 1)			1	67	
	V _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	7	12	17	31
steel, property class 4.8	γMs	[-]		_ 1)		•		25	
	V _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	9	15	21	39
steel, property class 5.6	γMs	[-]		_ 1)				67	
	V _{Rk,s}	[kN]	5	9	15	9	15	21	39
steel, property class 5.8	γMs	[-]		1,25	'		1,	25	
ataal property alaga 0.0	V _{Rk,s}	[kN]	8	14	23	15	23	34	63
steel, property class 8.8	γMs	[-]		1,25			1,	25	
Stainless steel A4 / HCR, property	$V_{Rk,s}$	[kN]	7	13	20	13	20	30	55
class 70	γMs	[-]		1,56				56	
Stainless steel A4 / HCR, property	V _{Rk,s}	[kN]	8	15	23	15	23	34	63
class 80	γMs	[-]		1,33			1,	33	
Characteristic bending moment							,		
steel, property class 4.6	M ⁰ Rk,s	[Nm]	_ 1)	_ 1)	_ 1)	15	30	52	133
Steel, property diaso 4.0	γMs	[-]		_ 1)				67	
steel, property class 4.8	M ⁰ Rk,s	[Nm]	_ 1)	_ 1)	_ 1)	15	30	52	133
	γMs	[-]		_ 1)				25	
steel, property class 5.6	M ⁰ Rk,s	[Nm]	_ 1)	_ 1)	_ 1)	19	37	66	167
, ,	γMs	[-]	0	_ 1)	0.7	40		67	407
steel, property class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	19	37	66	167
	γMs	[-]	10	1,25		20		25	000
steel, property class 8.8	M ⁰ Rk,s	[Nm]	12	30	60	30	60	105	266
	γMs • • • • • • • • • • • • • • • • • • •	[-] [Nm]	11	1,25 26	52	26	1, 52	25 92	233
Stainless steel A4 / HCR, property class 70	M ⁰ Rk,s	[-]	11	<u>∠6</u> 1,56	1 52	20		9∠ 56	
Stainless steel A4 / HCR, property	γMs M ⁰ Rk,s	[Nm]	12	30	60	30	60	105	266
class 80	ivi°Rk,s γMs	[-]	12	1,33	- 00	50		105 33	

¹⁾ Not part of the ETA

Chemofast Injection System STVK Pro or STVK NORDIC Pro		
Performances Characteristic resistance under tension and shear load – steel failure	Annex C 2	

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Definition of the reduction- and group factors	Annex C 3

Brick type: Autoclaved aerated concrete - AAC

Table C3: Stone description

Brick type		Autoclaved aerated concrete AAC
Density	ρ [kg/dm³]	0,35 – 0,6
Compressive strength	f_b [N/mm ²]	2, 4, 6
Code		EN 771-4:2011+A1:2015
Producer (Country)		e.g. Porit (DE)
Brick dimensions	[mm]	≥ 499 x 240 x 249
Drilling method		Rotary drilling

Table C4: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	Tinst	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10
Char. Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: c _{cr} = 210)						
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Spacing	Scr, II	[mm]	300						
Orial acteristic Spacing	[mm]	250							
Minimum Spacing	Smin	[mm]	50						

Table C5: Reduction factors for single anchors at the edge

Tension load			Shear load						
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V⊥	1	with c ≥	αedge, V II	
	50 0,	0,85		50	0,12		50	0,70	
		0,85	,05	125	0,50	I	125	0,85	
	150	1,00		210	1,00		150	1,00	

Table C6: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
	50	50	1,10	•	50	50	0,75
	150	50	1,25		150	50	0,90
j	150	300	2,00		150	250	2,00

Table C7: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥	1	with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
perpendicular	•••	50	50	0,20		50	50	0,25
to the free		210	50	1,60		210	50	1,80
edge	· ; · · · · · · · · · · · · · · · · · ·	210	300	2,00		210	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	α _g ⊥,ν II
parallel to the		50	50	1,15		50	50	0,80
free edge		150	50	1,60		150	50	1,10
nee eage	of the second second	150	300	2,00		150	250	2,00

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Autoclaved aerated concrete - AAC

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 4

			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
			Use condition								
Anchor size	Perforated	Effective Anchorage depth	d/d				w/d w/w		d/d w/d w/w		
Anchor Size	sleeve	And	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperatur ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	x,p		$N_{Rk,b} = N_{Rk}$,p	V _{Rk,b} 1)		
		[mm]				[kN]					
	Com	pressive st	rength f _b	= 2 N/mm ²	; [ensity ρ≥	0,35 kg/d	m³			
M8	-	≥ 80	1,2	0,9	0,9	0,9	0,9	0,9	1,5		
M10 / IG-M6	-	≥ 90	1,2	0,9	0,9	0,9	0,9	0,9	2,5		
M12 / IG-M8	-	≥ 100	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
M16 / IG-M10	-	≥ 100	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
M8	12x80	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5		
M8 / M10/	16x85	85	1,2	0,9	0,9	0,9	0,9	0,9	2,5		
IG-M6	16x130	130	1,2	0,9	0,9	0,9	0,9	0,9	2,5		
M12 / M16 /	20x85	85	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
IG-M8 /	20x130	130	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
IG-M10	20x200	200	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
		ve age		Characteristic Resistances with c ≥ c _{cr} ar Use condition w/d					d/d		
Anchor size	Perforated sleeve	Effecitve Anchorage depth	40°C/24°C	d/d 80°C/50°C	120°C/72°C	40°C/24°C	w/w	120°C/72°C	w/d w/w All Temperatur ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$.,p		$N_{Rk,b} = N_{Rk}$,p	V _{Rk,b} 1)		
		[mm]				[kN]					
	Com	pressive st	rength f _b	= 4 N/mm ²	; [ensity ρ≥	0,50 kg/d	m³			
M8	-	≥ 80	3,0	2,5	2,0	2,5	2,0	2,0	4,5		
M10 / IG-M6	6 -	≥ 90	3,0	2,5	2,0	2,5	2,0	2,0	7,5		
M12 / IG-M8	3 -	≥ 100	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
M16 / IG-M1	0 -	≥ 100	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
M8	12x80	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5		
M8 / M10/	16x85	85	3,0	2,5	2,0	2,5	2,0	2,0	7,5		
IG-M6	16x130	130	3,0	2,5	2,0	2,5	2,0	2,0	7,5		
M12 / M16 / K	G- 20x85	85	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
M8 /	20x130	130	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
IG-M10	20x200	200	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
1) V _{Pk} ac	cording to Ann	ex C3									

Brick type: Autoclaved aerated concrete – AAC												
Direct type: 7												
			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}									
				Use condition								
		ge g					w/d		d/d			
		ora ora		d/d			w/w		w/d			
Anchor size	Perforated	ch fig			ı			ı	w/w			
7 4101101 0120	sleeve	Effecitve Anchorage depth			 				_ All			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C				
									ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	r,p		$N_{Rk,b} = N_{Rk,p}$ $V_{Rk,b}$ ¹⁾					
		[mm]		[kN]								
	Com	pressive st	rength f _b :	= 6 N/mm ²	; 🛚 🗅	ensity ρ≥	0,65 kg/d	lm³				
M8	-	≥ 80	4,0	3,5	3,0	3,5	3,0	3,0	6,0			
M10 / IG-M6	-	≥ 90	4,0	3,5	3,0	3,5	3,0	3,0	10,0			
M12 / IG-M8	-	≥ 100	7,0	6,0	5,5	6,5	5,5	5,5	10,0			
M16 / IG-M10	-	≥ 100	7,0	6,0	5,5	6,5	5,5	5,5	10,0			
M8	12x80	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0			
M8 / M10/	16x85	85	4,0	3,5	3,0	3,5	3,0	3,0	10,0			
IG-M6	16x130	130	4,0	3,5	3,0	3,5	3,0	3,0	10,0			
M12/M16/	20x85	85	7,0	6,0	5,5	6,5	5,5	5,5	10,0			
IG-M8 /	20x130	130	7,0	6,0	5,5	6,5	5,5	5,5	10,0			
IG-M10	20x200	200	7,0	6,0	5,5	6,5	5,5	5,5	10,0			

¹⁾ V_{Rk,c} according to Annex C3

Table C9: Displacements

Anchor size	hef	δn / N	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0,1*N _{Rk} / 3,5	0*2*10	0,3	0,3*V _{Rk} /3,5	1,5*δ∨0
M16	all	0,1	U, I INRk / 3,5	2*δΝο	0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Autoclaved aerated concrete – AAC Characteristic Resistances and Displacements	Annex C 6

Brick type: Solid calcium silica brick KS-NF

Table C10: Stone description

Brick type		Solid calcium silica brick KS-NF
Density	ρ [kg/dm³]	≥ 2,0
Compressive strength	f _b [N/mm²]	≥ 28
Conversion factor for lov compressive strengths	wer	$(f_b / 28)^{0.5} \le 1.0$
Code		EN 771-2:2011+A1:2015
Producer (Country)		e.g. Wemding (DE)
Brick dimensions	[mm]	≥ 240 x 115 x 71
Drilling method		Hammer drilling

Table C11: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 10 ≤ 10 ≤ 15 ≤ 15 ≤ 10 ≤ 10						
Char. Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: $c_{cr} = 240$)						
Minimum Edge Distance	Cmin	[mm]	60						
Characteristic Spacing	Scr, II	[mm]				240			
Characteristic Spacing	Scr, ⊥	[mm]	150						
Minimum Spacing	Smin	[mm]		75					

Table C12: Reduction factors for single anchors at the edge

_	Tension load			Shear load							
Tension load			Perpendicular to the free edge			Parallel to the free edge					
+1	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II			
	60	0,50		60	0,30	I	60	0,60			
	100	0,50		100	0,50	Ţ	100	1,00			
o je o o o o o o o o o o o o o o o o o o	150	1,00	1	240	1,00]	150	1,00			

Table C13: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	pint	Anchor position perpendicular to hor. joint					
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N		
• •	60	75	0,70	•	60	75	1,15		
	150	75	1,40		150	75	2,00		
	150	240	2,00	· ;	150	150	2,00		

Table C14: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$	
perpendicular	•••	60	75	0,75		60	75	0,90	
to the free		150	75	2,00		150	75	2,00	
edge	***************************************	150	240	2,00	1	150	150	2,00	
Shear load		with c ≥	with s ≥	α _g II,V II	·	with c ≥	with s ≥	α _g ⊥,ν II	
parallel to the		60	75	2,00	•	60	75	2,00	
free edge		150	75	2,00		150	75	2,00	
l lice eage		150	240	2,00	· ;	150	150	2,00	

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Solid calcium silica brick KS-NF

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 7

Brick type: Solid calcium silica brick KS-NF

Table C15: Characteristic values of tension and shear load resistances

		<u> </u>		Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}					
		Effecitve Anchorage depth		Use condition									
Anchor size Perforate sleeve	Perforated			d/d			w/d w/w		d/d w/d w/w				
	sleeve	E An	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges				
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с,р		$N_{Rk,b} = N_{Rk}$	с,р	V _{Rk,b} ²⁾				
		[mm]				[kN]							
		(Compress	ive streng	th f _b ≥ 28 N	/mm ^{2 1)}							
M8	-	≥ 80	7,0	6,5	5,0	6,0	5,5	4,0					
M10 / IG-M6	•	≥ 90	7,0	6,5	5,0	6,0	5,5	4,0					
M12 / IG-M8	ı	≥ 100	7,0	6,5	5,0	6,0	5,5	4,0					
M16 / IG-M10	•	≥ 100	7,0	6,5	5,0	7,0	6,5	5,0					
M8	12x80	80	7,0	6,5	5,0	6,0	5,5	4,0	7,0				
M8 / M10/	16x85	85	7,0	6,5	5,0	7,0	6,5	5,0] 7,0				
IG-M6	16x130	130	7,0	6,5	5,0	7,0	6,5	5,0					
M12 / M16 /	20x85	85	7,0	6,5	5,0	7,0	6,5	5,0					
IG-M8 /	20x130	130	7,0	6,5	5,0	7,0	6,5	5,0					
IG-M10	20x200	200	7,0	6,5	5,0	7,0	6,5	5,0					

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C10.

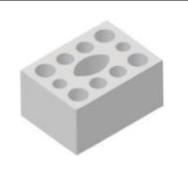
Table C16: Displacements

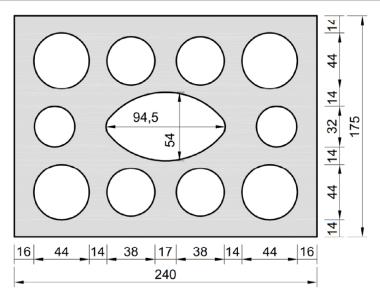
Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0,1*N _{Rk} / 3,5	0*51.0	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,1		2*δΝο	0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Solid calcium silica brick KS-NF
Characteristic Resistances and Displacements

Annex C 8


 $^{^{2)}\,}V_{Rk,c}$ according to Annex C3



Brick type: Hollow Calcium silica brick KSL-3DF

Table C17: Stone description

Brick type		Hollow calcium silica brick KSL-3DF
Density	ρ [kg/dm³]	≥ 1,4
Compressive strength	f _b [N/mm ²]	≥ 14
Conversion factor for low compressive strengths	ver	$(f_b / 14)^{0.75} \le 1.0$
Code		EN 771-2:2011+A1:2015
Producer (Country)		e.g. KS-Wemding (DE)
Brick dimensions	[mm]	≥ 240 x 175 x 113
Drilling method		Rotary drilling

Table C18: Installation parameter

Anchor size		[-]	M8	M8 M10 M12 M16 IG-M6 IG-M8 I						
Installation torque	T _{inst}	[Nm]	≤ 5							
Char. Edge distance	Ccr	[mm]	120	120 (for shear loads perpendicular to the free edge: $c_{cr} = 240$)						
Minimum Edge Distance	Cmin	[mm]		60						
Characteristic Spacing	Scr, II	[mm]				240				
Characteristic Spacing	Scr, ⊥	[mm]	[mm] 120							
Minimum Spacing	Smin	[mm]	120							

Table C19: Reduction factors for single anchors at the edge

Tension load					Shea	r load			
	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II	
•	60	1,00		60	0,30	•	60	1,00	
	120	1,00		240	1,00		120	1,00	

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Calcium silica brick KSL-3DF Description of the stone, Installation parameters, Reductionfactors	Annex C 9

Brick type: Hollow Calcium silica brick KSL-3DF

Table C20: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint					
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N		
	60	120	1,50	•	60	120	1.00		
	120	120	2,00		00	120	1,00		
	120	240	2,00		120	120	2,00		

Table C21: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥	†	with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
perpendicular	•••	60	120	0,30	•	60	120	0,30
to the free		120	120	1,00		00	120	0,30
edge	.,	120	240	2,00		240	120	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the	••	60	120	1,00	•	60	120	1,00
free edge		120	120	1,60		00	120	1,00
lice eage		120	120	2,00	, i	120	120	2,00

Table C22: Characteristic values of tension and shear load resistances

				Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
			Use condition								
		Effecitve Anchorage depth					w/d		d/d		
		Effecitve nchorag depth		d/d				w/d			
Anchor size	Perforated						w/w		w/w		
Alichor Size	sleeve								All		
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature		
									ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$:,p		$N_{Rk,b} = N_{Rk}$,,p	V _{Rk,b} ²⁾		
		[mm]				[kN]					
		(Compress	ive streng	th f _b ≥ 14 N	/mm ^{2 1)}					
M8 / M10/	16x85	85	2,5	2,5	1,5	2,5	2,5	1,5	6,0		
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	6,0		
M12 / M16 /	20x85	85	6,5	6,0	4,5	6,5	6,0	4,5	6,0		
IG-M8 / IG-M10	20x130	130	6,5	6,0	4,5	6,5	6,0	4,5	6,0		

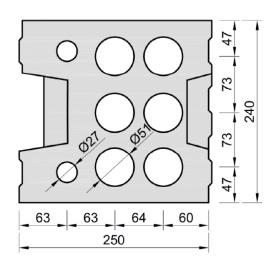
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C17.

Table C23: Displacements

Anchor sizo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.12*N / 2.5	0*2	0,55	0,55*V _{Rk} / 3,5	1,5 *δvo
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝ0	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Calcium silica brick KSL-3DF Group factors, characteristic Resistances and Displacements	Annex C 10

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Calcium silica brick KSL-8DF

Table C24: Stone description

Brick type		Hollow Calcium silica brick KSL-8DF
Density	ρ [kg/dm³]	≥ 1,4
Compressive strength	f _b [N/mm ²]	≥ 12
Conversion factor for low compressive strengths	ver	$(f_b / 12)^{0.75} \le 1.0$
Code		EN 771-2:2011+A1:2015
Producer (Country)		e.g. KS-Wemding (DE)
Brick dimensions	[mm]	≥ 248 x 240 x 238
Drilling method		Rotary drilling

Table C25: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque T _{inst}		[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 240)							
Minimum Edge Distance	Cmin	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	250							
Characteristic Spacing	Scr, ⊥	[mm]	120							
Minimum Spacing	Smin	[mm]	50							

Table C26: Reduction factors for single anchors at the edge

Tension load				Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II			
•	50	1,00		50	0,30	<u> </u>	50	1,00			
	120	1,00		250	1,00		120	1,00			

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Calcium silica brick KSL-8DF Description of the stone, Installation parameters, Reductionfactors	Annex C 11

Brick type: Hollow Calcium silica brick KSL-8DF

Table C27: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,00		50	50	1,00	
	120	250	2,00		120	120	2,00	

Table C28: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$
perpendicular	•••	50	50	0,45		50	50	0,45
to the free		250	50	1,15		250	50	1,20
edge		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s ≥	α _g II,V II		with c ≥	with s ≥	$lpha_{g\perp,VII}$
parallel to the	•	50	50	1,30		50	50	1,00
free edge		120	250	2,00		120	250	2,00

Table C29: Characteristic values of tension and shear load resistances

				Chara	vith c ≥ c _{cr}	cr and s ≥ scr					
			Use condition								
		Effecitve Anchorage depth					w/d		d/d		
		Effecitve nchorag depth		d/d			w/u w/w		w/d		
Anchor size	Perforated	lg l					VV/ VV				
Anchor Size	sleeve	AA							All		
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature		
									ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с,р		$N_{Rk,b} = N_{Rk}$, ,р	V _{Rk,b} ²⁾		
		[mm]				[kN]					
		(Compress	ive streng	th f _b ≥ 12 N	/mm ^{2 1)}			_		
M8 / M10/ IG-M6	16x130	130	5,0	4,5	3,5	5,0	4,5	3,5	3,5		
M12/M16/	20x130	130		4.5	2.5	F 0	4.5	0.5	6.0		
IG-M8 / IG-M10	20x200	200	5,0	4,5	3,5	5,0	4,5	3,5	6,0		

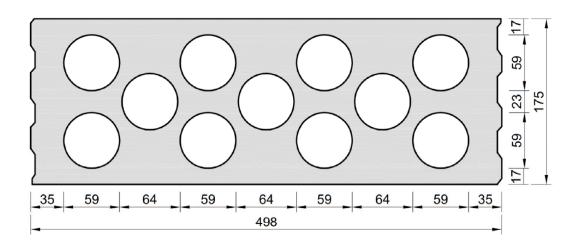
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C24.

Table C30: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.10*N / 0.5	0*5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝ0	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Calcium silica brick KSL-8DF Group factors, characteristic Resistances and Displacements	Annex C 12

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Calcium silica brick KSL-12DF

Table C31: Stone description

Brick type		Hollow Calcium silica brick KSL-12DF	
Density	ρ [kg/dm³]	≥ 1,4	
Compressive strength	f _b [N/mm²]	≥ 12	
Conversion factor for low strengths	$(f_b / 12)^{0.75} \le 1.0$		
Code		EN 771-2:2011+A1:2015	
Producer (Country)		e.g. KS-Wemding (DE)	
Brick dimensions	[mm]	≥ 498 x 175 x 238	
Drilling method		Rotary drilling	

Table C32: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T_{inst} [Nm] ≤ 4 ≤ 4 ≤ 5 ≤ 5				≤ 5	≤ 5			
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: $c_{cr} = 500$)						
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Spacing	Scr, II	[mm]	500						
Characteristic Spacing	Scr, ⊥	[mm]	120						
Minimum Spacing	Smin	[mm]	50						

Table C33: Reduction factors for single anchors at the edge

Tension load			Shear load						
			Perpendic	ular to the fr	ee edge	Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II	
•	50	1,00		50	0,45	<u> </u>	50	1,00	
	120	1,00		500	1,00		120	1,00	

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Calcium silica brick KSL-12DF Description of the stone, Installation parameters, Reductionfactors	Annex C 13

Brick type: Hollow Calcium silica brick KSL-12DF

Table C34: Factors for anchor groups under tension load

Anchor position	on parallel to h	or. joint		Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,50		50	50	1,00	
	120	500	2,00		120	240	2,00	

Table C35: Factors for anchor groups under shear load

	Anchor posit	ion parallel	to hor. joint		Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$
perpendicular	•••	50	50	0,55	•	50	50	0,50
to the free		500	50	1,00		500	50	1,00
edge		500	500	2,00		500	250	2,00
Shear load		with c ≥	with s ≥	α _g II,V II		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\!v\!\shortparallel$
parallel to the	•	50	50	2,00		50	50	1,30
free edge		120	500	2,00		120	250	2,00

Table C36: Characteristic values of tension and shear load resistances

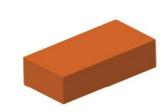
				Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
				Use condition							
		Effecitve Anchorage depth					14/d		d/d		
		Effecitve nchorag depth		d/d			w/d w/w		w/d		
Anchor size	Perforated	lg l		,			VV/ VV		w/w		
Anchor size	sleeve								All		
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature		
									ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с,р		$N_{Rk,b} = N_{Rk,p}$				
		[mm]				[kN]					
		(Compress	ive streng	th f _b ≥ 12 N	/mm ^{2 1)}					
M8 / M10/ IG-M6	16x130	130	3,5	3,5	2,5	3,5	3,5	2,5	3,5		
M12 / M16 / IG-M8 / IG-M10	20x130	130	3,5	3,5	2,5	3,5	3,5	2,5	7,0		

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C31.

Table C37: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	2*δΝ0	0,55	0,55*V _{Rk} / 3,5	1,5*δνο
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δvo

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Calcium silica brick KSL-12DF Group factors, characteristic Resistances and Displacements	Annex C 14


²⁾ V_{Rk,c} according to Annex C3

Brick type: Solid clay brick 1DF

Table C38: Stone description

Brick type		Solid clay brick Mz-1DF	
Density	ρ [kg/dm³]	≥ 2,0	
Compressive strength	f _b [N/mm ²]	≥ 20	
Conversion factor for lowe strengths	$(f_b / 20)^{0.5} \le 1.0$		
Code		EN 771-1:2011+A1:2015	
Producer (Country)		e.g. Wienerberger (DE)	
Brick dimensions	[mm]	≥ 240 x 115 x 55	
Drilling method		Hammer drilling	

Table C39: Installation parameter

Anchor size				M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Char. Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: c _{cr} = 240)						
Minimum Edge Distance	Cmin	[mm]	60						
Characteristic Spacing	Scr, II	[mm]		240					
Onaracteristic Spacing	Scr, ⊥	[mm]	130						
Minimum Spacing	Smin	[mm]	65						

Table C40: Reduction factors for single anchors at the edge

Tension load		Shear load							
Tension load			Perpendicular to the free edge			Parallel to the free edge			
+1	with c ≥	αedge, N	†	with c ≥	αedge, V⊥		with c ≥	αedge, V II	
	• 60 0.7	0,75		60	0,10		60	0,30	
	00	0,75		100	0,50	Ţ	100	0,65	
	150	1,00	1	240	1,00		150	1,00	

Table C41: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
1	with c ≥	with s ≥	αg II, N	1	with c ≥	with s ≥	αg⊥, N
• •	60	65	0,85		60	65	1,00
	150	65	1,15		150	65	1,20
	150	240	2,00	- income and the control	150	130	2,00

Table C42: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥	<u> </u>	with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$
perpendicular		60	65	0,40		60	65	0,30
to the free		240	65	2,00		240	65	2,00
edge	***************************************	240	240	2,00		240	130	2,00
Shear load		with c ≥	with s ≥	αg II,V II	·	with c ≥	with s ≥	α _{g ⊥,V II}
parallel to the		60	65	1,75	•	60	65	1,10
free edge		150	65	2,00	•	150	65	2,00
l liee eage		150	240	2,00		150	130	2,00

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Solid clay brick 1DF

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 15

Brick type: Solid clay brick 1DF

Table C43: Characteristic values of tension and shear load resistances

10.010 0 101												
				Chara	cteristic Res	sistances v	vith c ≥ c _{cr} :	and s ≥ s _{cr}				
				Use condition								
Anchor size	Perforated			d/d			d/d w/d w/w					
slee	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk,b}$	p		$N_{Rk,b} = N_{Rk}$:,p	$V_{\rm Rk,b}$ $^{2)}$			
		[mm]				[kN]						
Compressive strength f _b ≥ 20 N/mm ^{2 1)}												
M8	-	≥ 80	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M10 / IG-M6	-	≥ 90	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M12 / IG-M8	=	≥ 100	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,0	6,5	6,5	12,0			
M8	12x80	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M8 / M10/	16x85	85	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
IG-M6	16x130	130	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
	20x85	85	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M12 / IG-M8	20x130	130	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
	20x200	200	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
NA4C /	20x85	85	8,0	6,5	6,5	8,0	6,5	6,5	12,0			
M16 / IG-M10	20x130	130	8,0	6,5	6,5	8,0	6,5	6,5	12,0			
IG-WITO	20x200	200	8,0	6,5	6,5	8,0	6,5	6,5	12,0			

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C38.

Table C44: Displacements

Anchor size	hef	δη / Ν	δΝο	δn∞	δv / V	δνο	δ∨∞
Afficitor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0,1*N _{Rk} / 3,5	0*2*10	0,3	0,3*V _{Rk} / 3,5	1,5*δνο
M16	all	0,1	0,1*N _{Rk} / 3,5	2*δΝ0	0,1	0,1*V _{Rk} / 3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Solid clay brick 1DF

Characteristic Resistances and Displacements

Annex C 16

²⁾ V_{Rk,c} according to Annex C3

Brick type: Solid clay brick 2DF

Table C45: Stone description

Brick type		Solid clay brick Mz- 2DF
Density	ρ [kg/dm³]	≥ 2,0
Compressive strength	f _b [N/mm ²]	≥ 28
Conversion factor for lowe strengths	er compressive	$(f_b / 28)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Wienerberger (DE)
Brick dimensions	[mm]	≥ 240 x 115 x 113
Drilling method		Hammer drilling

Table C46: Installation parameter

Anchor size					M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	
Char. Edge distance	Ccr	[mm]	mm] 150 (for shear loads perpendicular to the free edge: c _{cr} = 240)						
Minimum Edge Distance	n Edge Distance c _{min} [mm] 50								
Characteristic Spacing	Scr, II	[mm]				240			
Orial acteristic Spacing	Scr, ⊥	[mm]	[mm] 240						
Minimum Spacing	Smin	[mm]				50			

Table C47: Reduction factors for single anchors at the edge

Tension load			Shear load						
			Perpendic	el to the free	I to the free edge				
1	with c ≥	αedge, N	· · · · · · · · · · · · · · · · · · ·	with c ≥	αedge, V⊥	1	with c ≥	αedge, V II	
	50	50 1,00		50	0,20	1	50	1,00	
	50	1,00		125	0,50	Ţ	50	1,00	
1	150	1,00	· ;	240	1,00		150	1,00	

Table C48: Factors for anchor groups under tension load

And	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,50		50	50	0,80
	150	240	2,00		150	240	2,00

Table C49: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular to the free edge		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$
		50	50	0,40		50	50	0,20
	• • •	240	50	1,20		240	50	0,60
		240 240	240	2,00		240	125	1,00
cage		240	240	2,00		240	240	2,00
Shear load		with c ≥	with s ≥	α _g II,V II	· · · · · · · · · · · · · · · · · · ·	with c ≥	with s ≥	α _{g ⊥,} ν II
parallel to the free edge	••	50	50	1,20	•	50	50	1,00
		150 240		2,00		50	125	1,00
l lice eage	- 			2,00		150	240	2,00

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Solid clay brick 2DF

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 17

Brick type:	Solid clay	brick 2DF	
Table C50:	Character	istic values	of tension and shear load resistances
			Characteristic Resistances

I													
				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}					
		Effecitve Anchorage depth		Use condition									
							w/d		d/d				
	Perforated			d/d			w/w		w/d				
Anchor size		Eff de politique de politique de de politique de politique de politique de de politique de de politique de de politique de de de politique de de de de de de de d			T		••••	T	w/w				
	sleeve	ш <u>₹</u>	4000/0400	0000/5000	4.0000/7000	4000/0400	0000/5000	40000/7000	All				
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C					
		h .		NI NI			NI NI		ranges V _{Rk,b} ²⁾				
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с,р		$N_{Rk,b} = N_{Rk}$	к,р	V Rk,b -/				
		[mm]		[kN] mpressive strength f _b ≥ 28 N/mm ^{2 1)}									
-								T	Ι				
M8	-	≥ 80	9,0	9,0	7,5	9,0	9,0	7,5	9,5				
M10 / IG-M6	-	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5				
M12 / IG-M8	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12				
M16 / IG-M10	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾				
M8	12x80	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5				
M8 / M10/	16x85	85	9,0	9,0	7,5	9,0	9,0	7,5	9,5				
IG-M6	16x130	130	9,0	9,0	7,5	9,0	9,0	7,5	9,5				
	20x85	85	9,0	9,0	7,5	9,0	9,0	7,5	12				
M12 / IG-M8	20x130	130	9,0	9,0	7,5	9,0	9,0	7,5	12				
	20x200	200	9,0	9,0	7,5	9,0	9,0	7,5	12				
M16/	20x85	85	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾				
M16 / IG-M10	20x130	130	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾				
	20x200	200	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾				

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C45.

Table C51: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Afficitor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0.1*N / 0.5	0*2	0,3	0,3*V _{Rk} / 3,5	1,5*δvo
M16	all	0,1	0,1*N _{Rk} / 3,5	2*δΝ0	0,1	0,1*V _{Rk} / 3,5	1,5*δ∨0

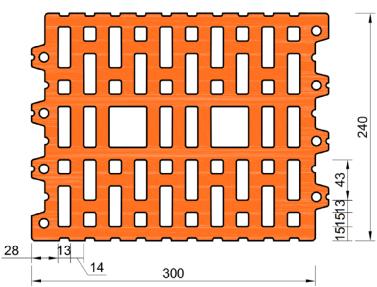
Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Solid clay brick 2DF
Characteristic Resistances and Displacements

Annex C 18

²⁾ V_{Rk,c} according to Annex C3

³⁾ Valid for all stone strengths with min. 10 N/mm²



Brick type: Hollow clay brick 10 DF

Table C52: Stone description

Brick type		Hollow clay brick HLZ-10DF	
Density	ρ [kg/dm³]	≥ 1,25	
Compressive strength	f _b [N/mm²]	≥ 20	
Conversion factor for lowe strengths	$(f_b / 20)^{0.5} \le 1.0$		
Code		EN 771-1:2011+A1:2015	
Producer (Country)		e.g. Wienerberger (DE)	
Brick dimensions	[mm]	300 x 240 x 249	
Drilling method		Rotary drilling	

Table C53: Installation parameter

Anchor size				M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤5 ≤10 ≤10 ≤5 ≤5 ≤10						≤ 10
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 300)						
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Spacing	Scr, II	[mm]		300					
Characteristic Spacing	Scr, ⊥	[mm]	250						
Minimum Spacing	Smin	[mm]	50						

Table C54: Reduction factors for single anchors at the edge

Tension load			Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, V ⊥		with c ≥	αedge, V II		
•	50	1,00		50	0,20	1	50	1,00		
	120	1,00		300	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick HLZ 10DF Description of the stone, Installation parameters, Reductionfactors	Annex C 19

Brick type: Hollow clay brick 10 DF

Table C55: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,55		50	50	1,00	
	120	300	2,00		120	250	2,00	

Table C56: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	αg II,V ⊥	1	with c ≥	with s ≥	$\alpha_{g \perp, V \perp}$
perpendicular	•••	50	50	0,30		50	50	0,20
to the free		300	50	1,40		300	50	1,00
edge		300	300	2,00	· †	300	250	2,00
Shear load		with c ≥	with s ≥	α _g II,V II		with c ≥	with s ≥	$\alpha_{\text{g}} _{\perp,\text{V}} _{\text{II}}$
parallel to the free edge		50	50	1,85		50	50	1,00
		120	300	2,00		120	250	2,00

Table C57: Characteristic values of tension and shear load resistances

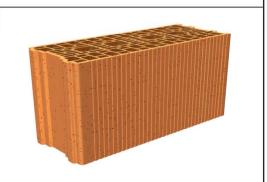
			Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
				Use condition						
		Effecitve Anchorage depth					w/d		d/d	
		ffecity ichora depth		d/d			w/d w/w		w/d	
Anchor size	Perforated	Effecitve nchorag depth		_			w/w			
Anchor Size	sleeve	A A							All	
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature	
									ranges	
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$				V _{Rk,b} ²⁾			
		[mm]				[kN]				
		Com	pressive	strength f	, ≥ 20 N/mn	1 ²	1)			
M8	12x80	80	2,5	2,5	2,0	2,5	2,5	2,0	8,0	
M8 / M10/	16x85	85	2,5	2,5	2,0	2,5	2,5	2,0	8,0	
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	8,0	
	20x85	85	5,0	5,0	4,5	5,0	5,0	4,5	8,0	
M12 / IG-M8	20x130	130	5,0	5,0	4,5	5,0	5,0	4,5	8,0	
	20x200	200	5,0	5,0	4,5	5,0	5,0	4,5	8,0	
N440 /	20x85	85	5,0	5,0	4,5	5,0	5,0	4,5	11,5	
M16 / IG-M10	20x130	130	5,0	5,0	4,5	5,0	5,0	4,5	11,5	
IG-IVITO	20x200	200	5,0	5,0	4,5	5,0	5,0	4,5	11,5	

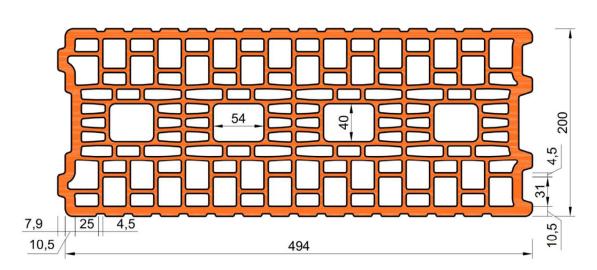
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C52.

Table C58: Displacements

		2 / 11	2		2 / 1 /	2	2
Anchor size	hef	δη / Ν	δΝΟ	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	2*δΝ0	0,55	0,55*V _{Rk} / 3,5	1,5*δvo
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick HLZ 10DF Group factors, characteristic Resistances and Displacements	Annex C 20


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Porotherm Homebric

Table C59: Stone description

Brick type		Hollow clay brick Porotherm Homebric	
Density	ρ [kg/dm³]	≥ 0,70	
Compressive strength	f _b [N/mm²]	≥ 10	
Conversion factor for lowe strengths	$(f_b / 10)^{0.5} \le 1.0$		
Code		EN 771-1:2011+A1:2015	
Producer (Country)		e.g. Wienerberger (FR)	
Brick dimensions	[mm]	500 x 200 x 300	
Drilling method		Rotary drilling	

Table C60: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
nstallation torque T _{inst}		[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	Cmin	[mm]	120						
Characteristic Spacing	Scr, II	[mm]		500					
Characteristic Spacing	Scr, ⊥	[mm]				300			
Minimum Spacing	Smin	[mm]	120						

Table C61: Reduction factors for single anchors at the edge

Tension load		Shear load							
rension load			Perpendicular to the free edge			Parallel to the free edge			
1	with c ≥	αedge, N		with c ≥	αedge, V⊥	-	with c ≥	αedge, V II	
•	120	1,00	-	120	0,30		120	0,60	
	120	1,00		250	0,60	1	120	0,00	
· · · · · · · · · · · · · · · · · · ·	120	1,00		500	1,00		200	1,00	

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick Porotherm Homebric Description of the stone, Installation parameters, Reductionfactors	Annex C 21

Brick type: Hollow Clay brick Porotherm Homebric

Table C62: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	pint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
••	120	100	1,00		120	100	1,00	
	200	100	2,00	•	200	100	1,20	
· promote and because of	120	500	2,00		120	300	2,00	

Table C63: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
nernendicular		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}} \perp, \text{v} \perp$
		120	100	0,30		120	100	0,30
	• • •	250	100	0,60	•	250	100	0,60
		500	100	1,00		120	300	2,00
		120	500	2,00		120	300	2,00
Shear load		with c ≥	with s ≥	α _g II,V II		with c ≥	with s ≥	α _g ⊥,ν II
parallel to the free edge	• •	120	100	1,00		120	100	1,00
		120	500	2,00		120	300	2,00

Table C64: Characteristic values of tension and shear load resistances

			Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
			Use condition							
	citve orage oth		d/d			/d		d/d		
Perforated	g g g				vv/ vv			w/w		
sleeve	sleeve □ ⊞ \(\{\bar{\bar{\bar{\bar{\bar{\bar{\ba							All		
		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature		
								ranges		
	h _{ef}		$N_{Rk,b} = N_{Rk,p}$		$N_{Rk,b} = N_{Rk,p}$			V _{Rk,b} ²⁾		
	[mm]				[kN]					
	Com	pressive	strength f	, ≥ 10 N/mm	1 ²	1)				
12x80	80			1	,2			3,0		
16x85	85			1	,2			3,0		
16x130	130			1	,5			3,5		
20x85	85		1,2					4,0		
20x130	130		1,5				4,0			
20x200	200			1	,5			4,0		
	12x80 16x85 16x130 20x85 20x130	hef mm] Com 12x80 80 16x85 85 16x130 130 20x85 85 20x130 130	Hef	Perforated sleeve Perforated sleeve	Perforated sleeve $P_{A} = \frac{1}{2} \frac$	Perforated sleeve $P_{A} = \frac{1}{2} $	Perforated sleeve Perforated sleeve $A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/50^{\circ}\text{C} = A0^{\circ}\text{C}/72^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/50^{\circ}\text{C} = A0^{\circ}\text{C}/72^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/50^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/50^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/24^{\circ}\text{C} = A0^{\circ}\text{C}/50^{\circ}\text{C} = A0^{\circ}\text{C}/50^{\circ$	Perforated sleeve Perforated Perforated Perforate Perforated Perforate Perforation Perf		

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C59.

Table C65: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δνο
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δvo

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick Porotherm Homebric Group factors, characteristic Resistances and Displacements	Annex C 22

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick BGV Thermo

Table C66: Stone description

Brick type		Hollow clay brick BGV Thermo
Density	ρ [kg/dm³]	≥ 0,60
Compressive strength	f _b [N/mm²]	≥ 10
Conversion factor for low strengths	er compressive	$(f_b / 10)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Leroux (FR)
Brick dimensions	[mm]	500 x 200 x 314
Drilling method		Rotary drilling
1		

Table C67: Installation parameter

Anchor size [-]			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	Cmin	[mm]	120						
Characteristic Spacing	Scr, II	[mm]				500			
Characteristic Spacing	Scr, ⊥	[mm]	315						
Minimum Spacing	Smin	[mm]	120						

Table C68: Reduction factors for single anchors at the edge

Tension load			Shear load						
Tension load			Perpendic	ular to the fr	ee edge	Parallel to the free edge			
1	with c ≥	αedge, N	-	with c ≥	αedge, V⊥	1	with c ≥	αedge, V II	
• 120	1,00		120	0,30	1	120	0,60		
	120	1,00		250	0,60	Ţ	120	0,00	
120 1,00		·	500	1,00		250	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick BGV Thermo Description of the stone, Installation parameters, Reductionfactors	Annex C 23

Brick type: Hollow Clay brick BGV Thermo

Table C69: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
1	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
	120	100	1,00		120	100	1,00	
	200	100	1,70	•	200	100	1,10	
- promote and because of	120	500	2,00		120	315	2,00	

Table C70: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$
perpendicular to the free	•••	120	100	1,00	•	120	100	1,00
edge		120	500	2,00		120	315	2,00
Shear load parallel to the		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	$lpha_{g\perp,V}$ II
	•	120	100	1,00		120	100	1,00
free edge		120	500	2,00		120	315	2,00

Table C71: Characteristic values of tension and shear load resistances

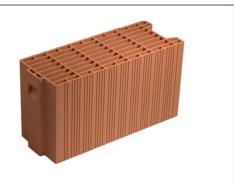
				Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
		evee Beffecitve Anchorage depth	Use condition								
Anahayaina	Perforated		d/d			w/d w/w			d/d w/d w/w		
Anchor size	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(, р		V _{Rk,b} ²⁾				
		[mm]				[kN]					
		Com	pressive	strength f	, ≥ 10 N/mn	1 ²	1)		,		
M8	12x80	80			0	,9			3,5		
M8 / M10/	16x85	85			0	,9			3,5		
IG-M6	16x130	130	2	2,0	1,5	2	:,0	1,5	4,0		
	20x85	85			0	,9			4,0		
M12 / IG-M8	20x130	130	2	2,0	1,5	2	:,0	1,5	4,0		
	20x200	200	2	2,0	1,5	2	:,0	1,5	4,0		
N46/	20x85	85	0,9						4,0		
M16 / IG-M10	20x130	130	2	2,0 1,5			.,0	1,5	4,0		
IG-IVI IO	20x200	200	2	2,0	1,5	2	:,0	1,5	4,0		

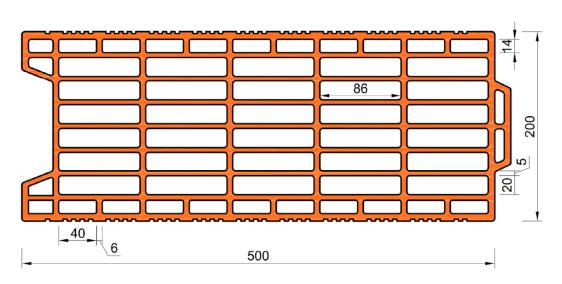
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C66.

Table C72: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	0*2.10	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13 NRk / 3,3	2*δΝ0	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick BGV Thermo Group factors, characteristic Resistances and Displacements	Annex C 24


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Calibric R+

Table C73: Stone description

Brick type		Hollow clay brick Calibric R+
Density	ρ [kg/dm³]	≥ 0,60
Compressive strength	f_b [N/mm ²]	≥ 12
Conversion factor for low strengths	er compressive	$(f_b / 12)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Leroux (FR)
Brick dimensions	[mm]	500 x 200 x 314
Drilling method		Rotary drilling

Table C74: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)					500)	
Minimum Edge Distance	Cmin	[mm]				120			
Characteristic Spacing	Scr, II	[mm]				500			
Orial acteristic Spacing	Scr, ⊥	[mm]	n] 315						
Minimum Spacing	Smin	[mm]	120						

Table C75: Reduction factors for single anchors at the edge

Tension load		Shear load							
rension load			Perpendicular to the free edge			Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II	
	120	1,00	-	120	0,15	I	120	0,30	
	120	1,00		250	0,30	Į Į	120	0,50	
- 	120	1,00		500	1,00		250	1,00	

Performances Hollow clay brick Calibric R+

Description of the stone, Installation parameters, Reductionfactors

Annex C 25

Brick type: Hollow Clay brick Calibric R+

Table C76: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	pint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	120	100	1,00		120	100	1,00	
	175	100	1,70		175	100	1,10	
· jacons and de la constant	120	500	2,00		120	315	2,00	

Table C77: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint				
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$	
perpendicular to the free	•••	120	100	1,00	-	120	100	1,00	
edge		120	500	2,00		120	315	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	$\alpha_{\text{g}} \bot, \! \! \text{v} \text{II}$	
parallel to the		• •	120	100	1,00		120	100	1,00
free edge		120	500	2,00		120	315	2,00	

Table C78: Characteristic values of tension and shear load resistances

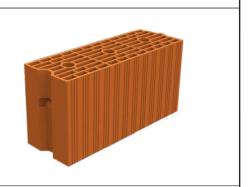
				Chara	acteristic Re	sistances with $c \ge c_{cr}$ and $s \ge s_{cr}$					
			Use condition								
	Perforated	Effecitve Anchorage depth	d/d				d/d w/d w/w				
Anchor size	sleeve	An	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$:,p	$N_{Rk,b} = N_{Rk,p}$			V Rk,b ²⁾		
		[mm]				[kN]					
		Cor	npressive	strength f	_b ≥ 12 N/mr	m ² 1)					
M8	12x80	80	1,2	1,2	0,9	1,2	1,2	0,9	4,0		
M8 / M10/	16x85	85	1,2	1,2	0,9	1,2	1,2	0,9	5,5		
IG-M6	16x130	130	1,5	1,5	1,2	1,5	1,5	1,2	5,5		
M12 / IG-M8	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	8,5		
IVI 12 / IG-IVI8	20x130	130	1,5	1,5	1,2	1,5	1,5	1,2	8,5		
M16 /	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	8,5		
IG-M10	20x130	130	1,5	1,5	1,2	1,5	1,5	1,2	8,5		

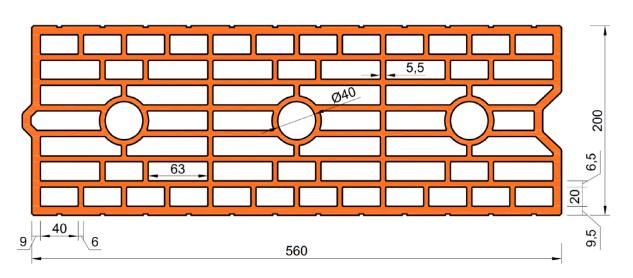
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C73.

Table C79: Displacements

Angher size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0 12*NL. / 2 5	0*2*10	0,55	0,55*V _{Rk} / 3,5	1,5*δvo
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δvo

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick Calibric R+ Group factors, characteristic Resistances and Displacements	Annex C 26


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Urbanbric

Table C80: Stone description

Brick type		Hollow clay brick Urbanbric
Density	ρ [kg/dm³]	≥ 0,70
Compressive strength	f_b [N/mm ²]	≥ 12
Conversion factor for low strengths	er compressive	$(f_b / 12)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Imerys (FR)
Brick dimensions	[mm]	560 x 200 x 274
Drilling method	_	Rotary drilling

Table C81: Installation parameter

Anchor size				M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	Cmin	[mm]	120						
Characteristic Spacing	Scr, II	[mm]		560					
Onaracteristic Spacing	Scr, ⊥	[mm]	275						
Minimum Spacing	Smin	[mm]	100						

Table C82: Reduction factors for single anchors at the edge

Tension load		Shear load							
Tension load			Perpendicular to the free edge			Parallel to the free edge			
1	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II	
	120	1,00	-	120	0,25		120	0,50	
	120	1,00		250	0,50	Į Į	120	0,50	
	120	1,00		500	1,00		250	1,00	

Performances Hollow clay brick Urbanbric

Description of the stone, Installation parameters, Reductionfactors

Annex C 27

Brick type: Hollow Clay brick Urbanbric

Table C83: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	120	100	1,00	•	120	100	1,00	
	185	100	1,90		185	100	1,10	
1	120	560	2,00	· i · · · · · · · · · · · · · · · · · ·	120	275	2,00	

Table C84: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot,\text{v}\bot$
perpendicular to the free edge		120	100	1,00		120	100	1,00
		120	560	2,00		120	275	2,00
Shear load parallel to the free edge		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
		120	100	1,00		120	100	1,00
		120	560	2,00		120	275	2,00

Table C85: Characteristic values of tension and shear load resistances

		Effecitve Anchorage depth	Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
			Use condition							
Anchor size	Perforated		d/d				d/d w/d w/w			
	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges	
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$				V _{Rk,b} ²⁾			
		[mm]				[kN]				
		Com	pressive	strength f	≥ 12 N/mn	1 ²	1)			
M8	12x80	80	1,2	1,2	0,9	1,2	1,2	0,9	4,5	
M8 / M10/	16x85	85	1,2	1,2	0,9	1,2	1,2	0,9	4,5	
IG-M6	16x130	130	3,0	3,0	2,5	3,0	3,0	2,5	4,5	
M10/IC M0	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	5,0	
M12 / IG-M8	20x130	130	3,0	3,0	2,5	3,0	3,0	2,5	5,0	
M16 / IC M10	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	5,0	
M16 / IG-M10	20x130	130	3,0	3,0	2,5	3,0	3,0	2,5	5,0	

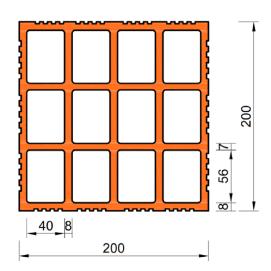
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C80.

Table C86: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	2*δΝ0	0,55	0,55*V _{Rk} / 3,5	1,5*δνο
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick Urbanbric Group factors, characteristic Resistances and Displacements	Annex C 28

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Brique creuse C40

Table C87: Stone description

Brick type		Hollow clay brick Brique creuse C40
Density	ρ [kg/dm³]	≥ 0,70
Compressive strength	f _b [N/mm²]	≥ 12
Conversion factor for low strengths	er compressive	$(f_b / 12)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Terreal (FR)
Brick dimensions	[mm]	500 x 200 x 200
Drilling method		Rotary drilling

Table C88: Installation parameter

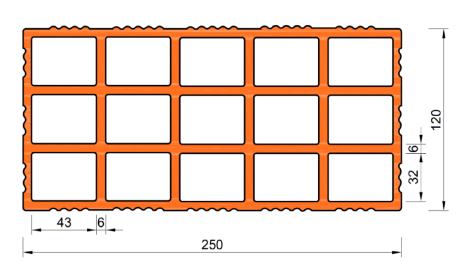
Anchor size					M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	Cmin	[mm]	120						
Characteristic Spacing	Scr, II	[mm]	500						
Characteristic Spacing	Scr, ⊥	[mm]	200						
Minimum Spacing	Smin	[mm]	200						

Table C89: Reduction factors for single anchors at the edge

Tension load			Shear load Shear load						
			Perpendic	ular to the fr	ee edge	Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II	
•	120	1,00		120	0,83	1 !	120	1,00	
	120	1,00		500	1,00		250	1,00	

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick Brique Creuse C40 Description of the stone, Installation parameters, Reductionfactors	Annex C 29

Brick type:		-	•								
Table C90:	Factors for			er tension	load						
1.4 100 100 100 100 100 100 100 100 100 10	chor position	15				Anchor position perpendicular to ho			5.		
	with c ≥	with s	≥ (αg II, N	Xg II, N		w	ith c ≥		with s ≥	αg⊥, N
	120	500		2,00		•		120		200	2,00
Table C91:	Factors for	anchor gre	oups unde	er shear lo	ad						
	Ancl	hor position	<u> </u>			P	Anchor I			endicular to I	nor. joint
Shear load		with c	≥ with s	3 ≥ α _{g II} ,	,∨ ⊥			with	C≥	with s ≥	$\alpha_{g\perp,V\perp}$
perpendicular to the free edge		120	500	2,0	00		•	12	0	200	2,00
Shear load		with c	≥ with s	S ≥ αg II	I,V II	H		with	C≥	with s ≥	α _{g ⊥,V II}
parallel to the free edge		120	500	2,0	00		,	12	0	200	2,00
Table C92:	Characteri	istic values	of tension	n and she	ar loac	d resi	stance	s		1	-
				Chara	acterist	ic Res	sistance	es with c	: ≥ <u>C</u> cr	and s ≥ s _{cr}	
							Use co	ndition			
		/e age						w/d			d/d
		city ore	d/d					-	v/u v/w		w/d
Anchor size	Perforated	Effecitve Anchorage depth		Τ							w/w
sleev	sleeve		40°C/24°C	80°C/50°C	120°C	/72°C	40°C/24	ŀ°C 80°C	;/50°C	120°C/72°C	ranges
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$					= NR	k,p	V _{Rk,b} 2)
		[mm]	<u> </u>				[kl	_			
140	10:00		pressive s	strength f	<u>,</u> ≥ 12 I	N/mm	l ²	1)			
M8	12x80	80	-								
M8 / M10/ IG-M6	16x85	85	-								
IG-IVIO	16x130 20x85	130 85	1,2	1,2	0,	0	1,2		1,2	0.0	1,5
M12 / IG-M8	20x85 20x130	130	1,4	ے, ا	ψ,	,9	2,۱		۷,۷	0,9	1,5
M16 /	20x130 20x85	85	1								
IG-M10	20x65 20x130	130	1								
1) For lower (VRk,c accord	compressive s ording to Annex	strengths resis	stances mus	st be multipl	ied by t	the cor	าversion	factor ac	cordi	ng to Table C	87.
Table C93:	Displacem	ents	T								
Anchor	r size	hef	δη / Ν	δΝο)	δι	N∞	δv / V		δνο	δ∨∞
		[mm]	[mm/kN]	[mm	1]	[m	nm]	[mm/kN	1]	[mm]	[mm]
M8 – M12, IG		all	0,13	0,13*N _{Rk}	./35	2*	δΝ0	0,55	0	,55*V _{Rk} / 3,5	1,5*δνο
M1	6	all	0,10	U, 10 1411			DINU	0,31	0	,31*V _{Rk} / 3,5	1,5*δνο
Chemofast I	es Hollow Cla	ay brick Br		se C40	IC Pro					Annex C	30



Brick type: Hollow Clay brick Blocchi Leggeri

Table C94: Stone description

Brick type		Hollow clay brick Blocchi Leggeri
Density	ρ [kg/dm³]	≥ 0,60
Compressive strength	f _b [N/mm²]	≥ 12
Conversion factor for low strengths	$(f_b / 12)^{0.5} \le 1.0$	
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Wienerberger (IT)
Brick dimensions	[mm]	250 x 120 x 250
Drilling method		Rotary drilling

Table C95: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)						
Minimum Edge Distance	Cmin	[mm]	60						
Characteristic Spacing	Scr, II	[mm]	250						
Orial actensitic Spacing	Scr, ⊥	[mm]	250						
Minimum Spacing	Smin	[mm]	100						

Table C96: Reduction factors for single anchors at the edge

Tension load			Shear load						
Tension load			Perpendicular to the free edge			Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V ⊥		with c ≥	αedge, V II	
•	60	1,00	→	60	0,40	1	60	0,40	
	120	1,00		250	1,00		120	1,00	

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick Blocchi Leggeri Description of the stone, Installation parameters, Reductionfactors	Annex C 31

Brick type: Hollow Clay brick Blocchi Leggeri

Table C97: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Ancho	r position perp	endicular to ho	r. joint
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	60	100	1,00		60	100	2,00
	120	250	2,00		120	250	2,00

Table C98: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load	-	with c ≥	with s ≥	α _g II,V ⊥	<u> </u>	with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
perpendicular	•••	60	100	0,40		60	100	0,40
to the free		250	100	1,00		250	100	1,00
edge	· 	250	250	2,00	· i · · · · · · · · · · · · · · · · · ·	250	250	2,00
Shear load	1	with c ≥	with s ≥	α _g II,V II	1	with c ≥	with s ≥	α _{g ⊥,} ν II
parallel to the	••	60	100	0,40	•	60	100	0,40
free edge		120	100	1,00	•	120	100	1,00
iree edge		120	250	2,00	+	120	250	2,00

Table C99: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}				
				Use condition								
Portorated	Perforated	est between the state of the st	d/d			w/d w/w			d/d w/d w/w			
Anchor size	sleeve	And	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$,p		$N_{Rk,b} = N_{Rk}$,p	V _{Rk,b} ²⁾			
		[mm]		[kN]								
		Com	pressive	strength f	≥ 12 N/mm	1 ²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
	20x85	85										
M12 / IG-M8	20x130	130	0,6	0,6	0,6	0,6	0,6	0,6	3,5			
	20x200	200										
N440 /	20x85	85										
IG-M10	M16 / 20x130 130											
10-10110	20x200	200										

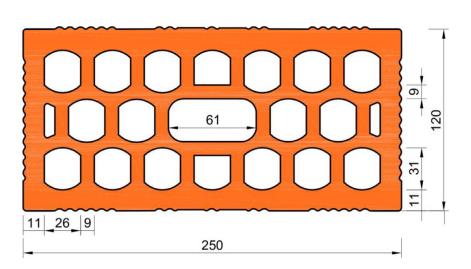
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C94.

Table C100: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.10	0.10*N / 0.5	0*5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick Blocchi Leggeri Group factors, characteristic Resistances and Displacements	Annex C 32

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Doppio Uni

Table C101: Stone description

Brick type		Hollow clay brick Doppio Uni	
Density	ρ [kg/dm³]	≥ 0,90	
Compressive strength	f _b [N/mm²]	≥ 28	
Conversion factor for low strengths	$(f_b / 28)^{0.5} \le 1.0$		
Code		EN 771-1:2011+A1:2015	
Producer (Country)		e.g. Wienerberger (IT)	
Brick dimensions	[mm]	250 x 120 x 120	
Drilling method		Rotary drilling	

Table C102: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: $c_{cr} = 250$)							
Minimum Edge Distance	Cmin	[mm]	100							
Characteristic Spacing	Scr, II	[mm]	250							
Characteristic Spacing	Scr, ⊥	[mm]	120							
Minimum Spacing	Smin	[mm]	100							

Table C103: Reduction factors for single anchors at the edge

Tension load			Shear load							
	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II		
•	100	1,00	→	100	0,50] <u>†</u> [100	1,00		
	120	1,00		250	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick Doppio Uni Description of the stone, Installation parameters, Reductionfactors	Annex C 33

Brick type: Hollow Clay brick Doppio Uni

Table C104: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	100	100	1,00		100	120	2,00	
	120	250	2,00		120	120	2,00	

Table C105: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor p	hor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{g \perp, V \perp}$	
perpendicular	•••	100	100	1,00	•	100	100	1,00	
to the free edge		250	250	2,00		250	120	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II	
parallel to the	•	100	100	1,00		100	100	1,00	
free edge		120	250	2,00		120	120	2,00	

Table C106: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s cr				
				Use condition								
		Effecitve Anchorage depth		ام/ما			w/d		d/d			
Anchor size	Perforated	Effecitve nchorag depth		d/d			w/d w/w					
	sleeve	Ā Ē							All			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature			
		1.		NI NI			$N_{Rk,b} = N_{Rk}$		ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$,p		V _{Rk,b} ²⁾					
		[mm]		[kN]								
		Com	pressive	strength f _b	≥ 28 N/mm) ²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
	20x85	85										
M12 / IG-M8	20x130	130	1,2	1,2	0,9	1,2	1,2	0,9	2,5			
	20x200	200										
N440 /	20x85	85										
M16 / IG-M10	20x130	130										
10-10110	20x200	200										

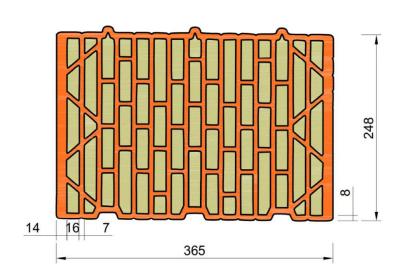
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C101.

Table C107: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.10*NL /0.5	O+S.	0,55	0,55*V _{Rk} / 3,5	1,5 *δvo
M16	all	0,13	0,13*N _{Rk} / 3,5	2 *δN0	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick Doppio Uni Group factors, characteristic Resistances and Displacements	Annex C 34

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick Coriso WS07 with insulation

Table C108: Stone description

Brick type		Hollow clay brick Coriso WS07
Insulationmaterial		Rock wool
Density	ρ [kg/dm³]	≥ 0,55
Compressive strength	f _b [N/mm²]	≥ 6
Conversion factor for low strengths	er compressive	$(f_b / 6)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Unipor (DE)
Brick dimensions	[mm]	248 x 365 x 249
Drilling method		Rotary drilling

Table C109: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: $c_{cr} = 250$)							
Minimum Edge Distance	Cmin	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	250							
Orianacienstic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	50							

Table C110: Reduction factors for single anchors at the edge

Tension load			Shear load							
Tension load			Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II		
•	50	1,00		50	0,30] !	50	1,00		
	120	1,00		250	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Hollow clay brick Coriso WS07 with insulation

Description of the stone, Installation parameters, Reductionfactors

Annex C 35

Brick type: Hollow clay brick Coriso WS07 with insulation

Table C111: Factors for anchor groups under tension load

Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,50		50	50	1,00	
	120	250	2,00		120	250	2,00	

Table C112: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
		50	50	0,40		50	50	0,40
to the free		250	50	1,00		250	50	1,20
edge	.,	250	250	2,00	1	250	250	2,00
Shear load		with c ≥	with s ≥	α _g II,V II		with c ≥	with s ≥	α _{g ⊥,} ν II
parallel to the free edge	• •	50	50	1,65		50	50	1,00
		120	250	2,00		120	250	2,00

Table C113: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	with c ≥ c _{cr}	and s ≥ s _{cr}				
		A E		Use condition								
Anchor size	Perforated sleeve			d/d			d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(,p		$N_{Rk,b} = N_{Rk}$	ː,p	V Rk,b ²⁾			
		[mm]				[kN]						
		Com	pressive	strength f	, ≥ 6 N/mm²	2	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
	20x85	85										
M12 / IG-M8	20x130	130	1,5	1,5	1,5	1,5	1,5	1,5	5,0			
	20x200	200										
NA4C /	20x85	85										
M16 / IG-M10	20x130	130										
	20x200	200										

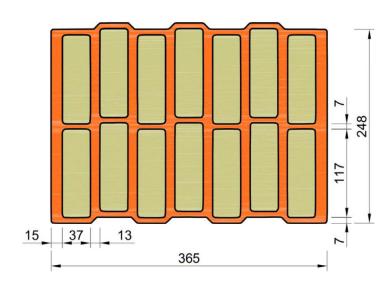
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C108.

Table C114: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Anchor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.40*NL / 0.5	0***	0,55	0,55*V _{Rk} / 3,5	1,5* δvo
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick Coriso WS07 with insulation Group factors, characteristic Resistances and Displacements	Annex C 36

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick T7 MW with insulation

Table C115: Stone description

Brick type		Hollow clay brick T7 MW	
Insulation material		Rock wool	
Density	ρ [kg/dm³]	≥ 0,59	
Compressive strength	f _b [N/mm²]	≥ 8	
Conversion factor for low strengths	$(f_b / 8)^{0.5} \le 1.0$		
Code		EN 771-1:2011+A1:2015	
Producer (Country)		e.g. Wienerberger (DE)	
Brick dimensions	[mm]	248 x 365 x 249	
Drilling method		Rotary drilling	

Table C116: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: $c_{cr} = 250$)							
Minimum Edge Distance	Cmin	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	250							
Onaracienstic Spacing	Scr, ⊥	[mm]				250				
Minimum Spacing	Smin	[mm]	50							

Table C117: Reduction factors for single anchors at the edge

т	Tension load			Shear load							
,	ension load		Perpendicular to the free edge			Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II			
•	50	1,00	→	50	0,35	<u> </u>	50	1,00			
	120	1,00		250	1,00		120	1,00			

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Hollow clay brick T7 MW with insulation

Description of the stone, Installation parameters, Reductionfactors

Annex C 37

Brick type: Hollow clay brick T7 MW with insulation

Table C118: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Ancho	r position perp	endicular to ho	r. joint
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,40		50	50	1,15
	120	250	2,00		120	250	2,00

Table C119: Factors for anchor groups under shear load

	Anchor	Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint			
perpendicular		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$	
	•••	50	50	0,60		50	50	0,40	
		250	50	1,55		250	50	1,00	
	.,	250	250	2,00	· i · · · · · · · · · · · · · · · · · ·	250	250	2,00	
Shear load parallel to the free edge		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	α _g ⊥,ν II	
	• •	50	50	2,00		50	50	1,20	
		120	250	2,00		120	250	2,00	

Table C120: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	with c ≥ c _{cr}	and s ≥ s _{cr}					
		Effecitve Anchorage depth		Use condition									
	Perforated			d/d			d/d w/d w/w						
Anchor size	sleeve	Ef And c	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges				
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(,p		$N_{Rk,b} = N_{Rk}$	(,p	V _{Rk,b} ²⁾				
		[mm]				[kN]							
		Com	pressive	strength f	, ≥ 8 N/mm ²	?	1)						
M8	12x80	80											
M8 / M10/	16x85	85											
IG-M6	16x130	130							2.0				
	20x85	85							3,0				
M12 / IG-M8	20x130	130	2,0	2,0	1,5	2,0	2,0	1,5					
	20x200	200											
N440 /	20x85	85											
M16 / IG-M10	20x130	130							4,5				
IG-IVI IU	20x200	200											

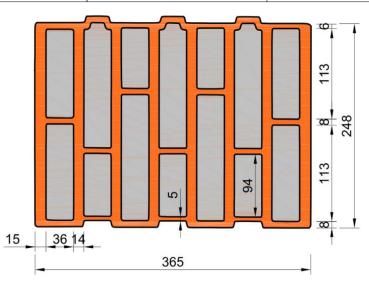
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C115.

Table C121: Displacements

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δνο
M16	all	,			0,31	0,31*V _{Rk} /3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick T7 MW with insulation Group factors, characteristic Resistances and Displacements	Annex C 38

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick T8 P with insulation

Table C122: Stone description

Brick type		Hollow clay brick T8 P
Insulation material		Perlite
Density	ρ [kg/dm³]	≥ 0,56
Compressive strength	f _b [N/mm²]	≥ 6
Conversion factor for low strengths	er compressive	$(f_b / 6)^{0,5} \le 1,0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Wienerberger (DE)
Brick dimensions	[mm]	248 x 365 x 249
Drilling method		Rotary drilling

Table C123: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)						250)
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Spacing	Scr, II	[mm]		250					
Onaracteristic Spacing	Scr, ⊥	[mm]	250						
Minimum Spacing	Smin	[mm]	50						

Table C124: Reduction factors for single anchors at the edge

Tension load			Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II		
•	50	1,00	→	50	0,25	1	50	1,00		
120		1,00		250	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow clay brick T8 P with insulation Description of the stone, Installation parameters, Reductionfactors	Annex C 39

Brick type: Hollow clay brick T8 P with insulation

Table C125: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	vith s ≥ αg II, N		with c ≥	with s ≥	αg⊥, N
• •	• • 50	50	1,30		50	50	1,10
	120	250	2,00		120	250	2,00

Table C126: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint				
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$	
perpendicular	•••	50	50	0,40		50	50	0,30	
to the free		250	50	1,35		250	50	1,20	
edge	.,	250	250	2,00		250	250	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	α _{g ⊥,} ν II	
parallel to the	• •	50	50	1,70		50	50	1,00	
free edge		120	250	2,00		120	250	2,00	

Table C127: Characteristic values of tension and shear load resistances

			Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$										
		Effecitve Anchorage depth		Use condition									
							w/d						
		Effecitve nchorag depth		d/d				w/d					
Anchor size	Perforated	iffe de					w/w						
Anchor size	sleeve	₽₽	40°C/24°C	80°C/50°C		40°C/24°C		120°C/72°C	All				
					120°C/72°C		80°C/50°C		Temperature				
									ranges				
		h _{ef}		$N_{Rk,b} = N_{Rk}$,p		V _{Rk,b} ²⁾						
		[mm]				[kN]							
		Com	pressive	strength f	≥ 6 N/mm ²	2	1)						
M8	12x80	80					1,5						
M8 / M10/	16x85	85											
IG-M6	16x130	130	4.5	1.5	1.5	4.5		4.5	4.5				
	20x85	85	1,5	1,5	1,5	1,5		1,5	4,5				
M12 / IG-M8	20x130	130											
	20x200	200											
NA4C /	20x85	85					2,5						
M16 / IG-M10	20x130	130	2,5	2,5	2,0	2,5		2,0	7,0				
IG-IVI IO	20x200	200											

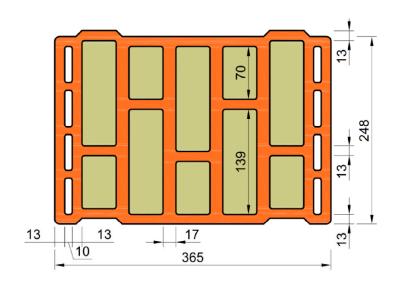
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C122.

Table C128: Displacements

	hef	δη / Ν	δΝο	δN∞	δν / V	δνο	δ∨∞
Anchor size							- •
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.10*NL / 0.5	0.42*0	0,55	0,55*V _{Rk} / 3,5	1,5*δvo
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝ0	0,31	0,31*V _{Rk} / 3,5	1,5*δνο

Chemo	ofast Injection System STVK Pro or STVK NORDIC Pro	
	mances Hollow Clay brick T8 P with insulation factors, characteristic Resistances and Displacements	Annex C 40

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick Thermoplan MZ90-G with insulation

Table C129: Stone description

Brick type		Hollow clay brick Thermoplan MZ90-G
Insulation material		Rock wool
Density	ρ [kg/dm³]	≥ 0,68
Compressive strength	f _b [N/mm ²]	≥ 12
Conversion factor for lowe strengths	er compressive	$(f_b / 12)^{0.5} \le 1.0$
Code		EN 771-1:2011+A1:2015
Producer (Country)		e.g. Mein Ziegelhaus (DE)
Brick dimensions	[mm]	248 x 365 x 249
Drilling method		Rotary drilling

Table C130: Installation parameter

Anchor size [-]			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)						
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Spacing	Scr, II	[mm]		250					
Characteristic Spacing	Scr, ⊥	[mm]	250						
Minimum Spacing	Smin	[mm]	50						

Table C131: Reduction factors for single anchors at the edge

т	Tension load			Shear load						
,	ension load		Perpendic	ular to the fro	ee edge	Parallel to the free edge				
	with c ≥	Œedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II		
•	50	1,00	→	50	0,25	<u> </u>	50	1,00		
	120	1,00		250	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro

Performances Hollow clay brick Thermoplan MZ90-G with insulation Description of the stone, Installation parameters, Reduction factors

Annex C 41

Brick type: Hollow clay brick Thermoplan MZ90-G with insulation

Table C132: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,00		50	50	1,00
	120	250	2,00		120	250	2,00

Table C133: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor p	position perpendicular to hor. joint			
Shear load perpendicular to the free edge		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}} \perp, \text{v} \perp$	
		50	50	0,75		50	50	0,50	
		250	50	2,00		250	50	1,70	
		250	250	2,00		250	250	2,00	
Shear load parallel to the free edge		with c ≥	with s ≥	α _g II,V II		with c ≥	with s ≥	$\alpha_{g\perp,V}$ II	
	•	50	50	1,65		50	50	1,15	
		120	250	2,00		120	250	2,00	

Table C134: Characteristic values of tension and shear load resistances

				Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$								
				Use condition								
		Effecitve Anchorage depth						d/d				
		Effecitve nchorag depth		d/d			w/d w/w		w/d			
Anchor size	Perforated	iffe de					w/w					
7 11 10 10 10 10 120	sleeve	™ ¥							All			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature			
		<u></u>							ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$,p		V _{Rk,b} ²⁾					
		[mm]				[kN]						
		Com	pressive	strength f	≥ 12 N/mn	1 ²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130	2.0	2.0	0.5	2.0	2.0	0.5	4.0			
	20x85	85	3,0	3,0	2,5	3,0	3,0	2,5	4,0			
M12 / IG-M8	20x130	130										
	20x200	200										
N440 /	20x85	85					3,5	3,0				
M16 / IG-M10	20x130	130	3,5	3,5	3,0	3,5			7,5			
	20x200	200										

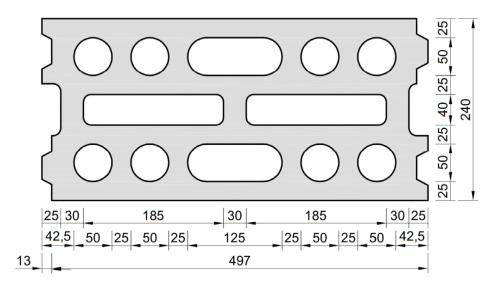
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C129.

Table C135: Displacements

	hef	δη / Ν	δΝο	δN∞	δν / V	δνο	δ∨∞
Anchor size							- •
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	0.42*0	0,55	0,55*V _{Rk} / 3,5	1,5*δvo
M16	all	0,13		2*δΝ0	0,31	0,31*V _{Rk} / 3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow Clay brick MZ90-G with insulation Group factors, characteristic Resistances and Displacements	Annex C 42

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow light weight concrete brick HBL 16DF

Table C136: Stone description

Brick type		Hollow light weight concrete brick HBL 16DF
Density	ρ [kg/dm³]	≥ 1,0
Compressive strength	f _b [N/mm ²]	≥ 3,1
Conversion factor for lowe strengths	er compressive	$(f_b/3,1)^{0,5} \le 1,0$
Code		EN 771-3:2011+A1:2015
Producer (Country)		e.g. KLB Klimaleichtblock (DE)
Brick dimensions	[mm]	500 x 250 x 240
Drilling method		Rotary drilling

Table C137: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque T _{inst}		[Nm]	≤ 2	≤ 2	≤ 5	≤ 5	≤ 2	≤ 5	≤ 5	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)							
Minimum Edge Distance	Cmin	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	500							
Characteristic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	50							

Table C138: Reduction factors for single anchors at the edge

7	Tension load			Shear load						
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II		
•	50	1,00	→	50	0,30	1 •	50	1,00		
	120	1,00		250	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow light weight concrete brick HBL 16DF Description of the stone, Installation parameters, Reductionfactors	Annex C 43

Brick type: Hollow light weight concrete brick HBL 16DF

Table C139: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	2,00		50	50	1,55
	120	500	2,00		120	250	2,00

Table C140: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular to the free edge		with c ≥	with s ≥	α _g II,V ⊥	1	with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
		50	50	0,60		50	50	0,35
		120	50	2,00		120	50	1,15
		120	500	2,00		120	250	2,00
		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	α _g ⊥,ν II
Shear load parallel to the	••	50	50	1,30		50	50	1.00
free edge		120	250	2,00			50	1,00
		120	500	2,00		120	250	2,00

Table C141: Characteristic values of tension and shear load resistances

				Chara	cteristic Res	sistances w	ith c ≥ c _{cr}	and s ≥ s _{cr}			
	Perforated	Effecitve Anchorage depth	Use condition								
			d/d				w/d w/w	d/d w/d w/w			
Anchor size	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$			١	V _{Rk,b} ²⁾				
		[mm]				[kN]					
		Com	pressive s	strength f	≥ 3,1 N/mr	n ² 1)				
M8 / M10/	16x85	85	1,2	1,2	0,9	1,2	1,2	0,9	2,0		
IG-M6	16x130	130	1,2	1,2	0,9	1,2	1,2	0,9	2,0		
	20x85	85									
M12 / IG-M8	20x130	130							3,0		
	20x200	200	4.5	4.5	1.0	4.5	4.5	1.0			
N40 /	20x85	85	1,5	1,5	1,2	1,5	1,5	1,2			
M16 /	20x130	130							5,0		
IG-M10	20x200	200									

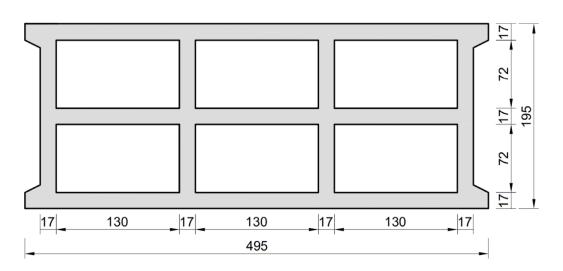
¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C136.

Table C142: Displacements

Anchor cizo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.12*N / 2.5	0.4240	0,55	0,55*V _{Rk} / 3,5	1,5 *δvo
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝ0	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow light weight concrete brick HBL 16DF Group factors, characteristic Resistances and Displacements	Annex C 44

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow concrete brick Bloc Creux B40

Table C143: Stone description

Brick type		Hollow concrete brick Bloc Creux B40
Density	ρ [kg/dm³]	≥ 0,8
Compressive strength	f _b [N/mm²]	≥ 5,2
Conversion factor for lowe strengths	er compressive	$(f_b / 5,2)^{0,5} \le 1,0$
Code		EN 771-2:2011+A1:2015
Producer (Country)		e.g. Leroux (FR)
Brick dimensions	[mm]	500 x 200 x 200
Drilling method		Rotary drilling

Table C144: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 170)						
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Charing Scr. II [170						
Characteristic Spacing	Scr, ⊥	[mm]	200						
Minimum Spacing	Smin	[mm]] 50						

Table C145: Reduction factors for single anchors at the edge

Tension load				Shear load						
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, V ⊥		with c ≥	αedge, V II		
•	50	1,00		50	0,35	<u>†</u>	50	1,00		
	120	1,00		170	1,00		120	1,00		

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Hollow concrete brick Bloc Creux B40 Description of the stone, Installation parameters, Reductionfactors	Annex C 45

Brick type: Hollow concrete brick Bloc Creux B40

Table C146: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	pint	Anchor position perpendicular to hor. joint				
1	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
	50	50	1,50		50	50	1,40	
	50	170	2,00	•	50	200	2,00	
	120	170	2,00		120	200	2,00	

Table C147: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥	†	with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
perpendicular to the free edge		50	50	0,55		50	50	0,35
		120	50	1,30		120	50	0,85
	· · · · · · · · · · · · · · · · · · ·	120	170	2,00		120	200	2,00
		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
Shear load parallel to the	••	50	50	1,10	•	50	50	1,00
free edge	*	120	170	2,00 50 200 120 200	200	2,00		
			170		, i	120	200	2,00

Table C148: Characteristic values of tension and shear load resistances

			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}									
		Effecitve Anchorage depth		Use condition								
Per	Perforated		d/d				w/d w/w		d/d w/d w/w			
Anchor size	sleeve	E	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$,p		$N_{Rk,b} = N_{Rk}$,p	V _{Rk,b} ²⁾			
		[mm]				[kN]						
		Com	pressive	strength f _b	≥ 5,2 N/mr	n²	1)					
M8 / M10/ IG-M6	16x130	130										
M12 / IG-M8	20x130	130	2,0	1,5	1,2	2,0	1,5	1,2	6,0			
M16 / IG-M10	20x130	130										

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C143.

Table C149: Displacements

Anchor size	hef	δη / Ν	δΝο	δn∞	δv / V	δνο	δ∨∞
Anchor Size	[mm]	[mm/kN] [mm]		[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	0*5510	0,55	0,55*V _{Rk} / 3,5	1,5*δνο
M16	all	0,13	0,13 NRk / 3,3	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances hollow concrete brick Bloc Creux B40 Group factors, characteristic Resistances and Displacements	Annex C 46

²⁾ V_{Rk,c} according to Annex C3

Brick type: Solid light weight concrete brick

Table C150: Stone description

Brick type		Solid light weight concrete brick
Density	ρ [kg/dm³]	≥ 0,6
Compressive strength	f _b [N/mm²]	≥ 2
Conversion factor for low strengths	er compressive	$(f_b / 2)^{0,5} \le 1,0$
Code		EN 771-3:2011+A1:2015
Producer (Country)		e.g. Bisotherm (DE)
Brick dimensions	[mm]	≥ 240 x 300 x 113
Drilling method		Rotary drilling

Table C151: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]				150			
Minimum Edge Distance	Cmin	[mm]	60						
Characteristic Spacing	Scr, II	[mm]	300						
Characteristic Spacing	Scr, ⊥	[mm]	300						
Minimum Spacing	Smin	[mm]	120						

Table C152: Reduction factors for single anchors at the edge

Tension load			Shear load						
Tension load			Perpendicular to the free edge			Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, V⊥		with c ≥	αedge, V II	
•	60	1,00	→	60	0,25	<u> </u>	60	0,40	
	150	1,00		150	1,00		100	1,00	

Table C153: Factors for anchor groups under tension load

An	Anchor position parallel to hor. joint			Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	60	120	1,00		60	120	1,00
	150	300	2,00		150	300	2,00

Table C154: Factors for anchor groups under shear load

	Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	α _g II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}} \perp, \text{v} \perp$
perpendicular	•••	60	120	0,25		60	120	0,25
to the free		150	120	1,00		150	120	1,00
edge	150	300	2,00		150	300	2,00	
		with c ≥	with s ≥	αg II,V II	·	with c ≥	with s ≥	αg ⊥,V II
Shear load parallel to the	el to the	60	120	0,40	•	60	120	0,40
free edge		100	120	1,00		100	120	1,00
l noo oago		150	300	2,00		150	300	2,00

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Solid light weight concrete brick Description of the stone, Installation parameters, Reduction- and Group factors	Annex C 47

3,0

Brick type: Solid light weight concrete brick Table C155: Characteristic values of tension and shear load resistances Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$ Use condition Effecitve Anchorage depth d/d w/d d/d w/d w/w w/w Perforated Anchor size sleeve ΑII 40°C/24°C 80°C/50°C 120°C/72°C 40°C/24°C 80°C/50°C 120°C/72°C Temperature ranges h_{ef} $N_{\mathsf{Rk},\mathsf{b}} = N_{\mathsf{Rk},\mathsf{p}}$ $N_{\mathsf{Rk},b} = N_{\mathsf{Rk},p}$ $V_{Rk,b}^{2)}$ [kN] [mm] Compressive strength $f_b \ge 2 \text{ N/mm}^{2-1}$ M8 80 M10 / IG-M6 90 3,0 2,5 2,0 2,5 2,0 1,5 M12 / IG-M8 100 M16 / IG-M10 100 M8 12x80 80

2,5

2.0

2,5

2.0

1,5

Table C156: Displacements

16x85

16x130

20x85

20x130

20x200

20x85

20x130

M8 / M10/ IG-M6

M12 / IG-M8

M16 /

85

130

85

130

200

85

130

2,5

Anchor size	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Afficitor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0,1*N _{Rk} / 3,5	0.42*0	0,3	0,3*V _{Rk} / 3,5	1,5*δνο
M16	all	0,1	U, I INRK / 3,3	2*δΝ0	0,1	0,1*V _{Rk} /3,5	1,5*δνο

Chemofast Injection System STVK Pro or STVK NORDIC Pro	
Performances Solid light weight concrete brick Characteristic Resistances and Displacements	Annex C 48

IG-M10 20x130 130 20x200 200 For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C150.

V_{Rk,c} according to Annex C3