

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0514 of 15 September 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TSM high performance, TSM high performance A4, TSM high performance HCR

Mechanical fasteners for use in concrete

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE Dübel GmbH & Co. KG

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

ETA-15/0514 issued on 22 September 2020

European Technical Assessment ETA-15/0514

Page 2 of 22 | 15 September 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0514

Page 3 of 22 | 15 September 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE Concrete screw TSM high performance is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements (static and quasi-static loading)	See Annex C 7
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

European Technical Assessment ETA-15/0514

Page 4 of 22 | 15 September 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

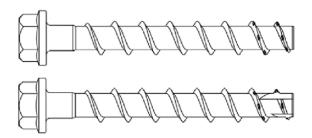
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

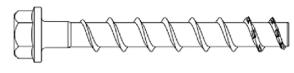
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 15 September 2021 by Deutsches Institut für Bautechnik

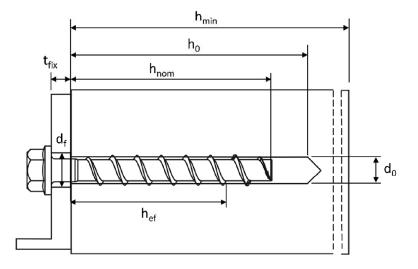
Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:
Tempel


Product in installed condition

TOGE concrete screw TSM high performance


- Galvanized carbon steel
- Zinc flakes coated carbon steel

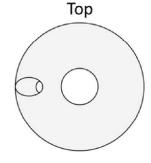
- Stainless steel A4
- Stainless steel HCR

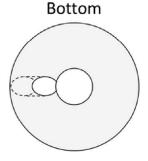
e.g. TOGE concrete screw, zinc flakes coated, with hexagon head and fixture

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

d_f = clearance hole diameter


h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

TOGE concrete screw TSM high performance

Product description

Product in installed condition

Annex A1

		Configuration with metric connect and hexagon socket e.g. TSM 8x10	
	0	Configuration with metric connect and hexagon drive e.g. TSM 8x105	
	TS AF	Configuration with washer and here.g. TSM 8x80 SW13 VZ 40; Type S	•
	(15 Ag	Configuration with washer, hexago TORX drive e.g. TSM 8x80 SW13; T	
	OCT AND	Configuration with washer and but e.g. TSM BC ST 14x130 SW24 VZ 40	
	(54) (5)	Configuration with hexagon head e.g. TSM 8x80 SW13 OS; Type S	
	(154) (2) (2)	Configuration with countersunk he e.g. TSM 8x80 C VZ 40; Type SK	ead and TORX drive
	(15 Mg	Configuration with pan head and T drive e.g. TSM 8x80 P VZ 40; Type	
	(SM)	Configuration with large pan head drive e.g. TSM 8x80 LP VZ 40; Type	
		Configuration with countersunk he connection thread e.g. TSM 6x55 A	
		Configuration with hexagon drive a connection thread e.g. TSM 6x55 N	
		Configuration with internal thread hexagon drive e.g. TSM 6x55 IM M	
TOGE concrete se	crew TSM high per	formance	
Product descri Screw types	ption		Annex A2

Table 1: Material

Part	Product name		Material							
all types	TSM high performance	- Zinc flake coating acc	17 galvanized acc. to EN I cording to EN ISO 10683: cording to EN ISO 10683:	2018 (≥5μm)						
,,	TSM high performance A4	1.4401; 1.4404; 1.4571; 1.4578								
	TSM high performance HCR	1.4529								
Part	Product name	Nominal char Yield strength f _{yk} [N/mm²]	acteristic steel Ultimate strength fuk [N/mm²]	Rupture elongation A₅ [%]						
all types	TSM high performance TSM high performance A4	560	700	≤8						

Table 2: Dimensions

Anchor size			6 8 10				12			14						
Nominal embedment h _{nom}		1	2	1	2	3	1	2	3	1	2	3	1	2	3	
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d_{κ}	[mm]	5,1 7,1				9,1			11,1			13,1			
Thread outer diameter	d _s	[mm]	7	7,5		10,6			12,6		14,6		5	16,6		
Thickness of filling washer	t _v	[mm]		-		5			5			5	·		5	·

Marking:

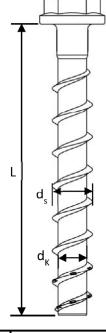
TSM high performance

Screw type: TSM
Screw size: 10
Screw length: 100

TSM high performance BC ST

Screw type: TSM BC ST
Screw size: 10
Screw length: 100

TSM high performance A4


Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

TSM high performance HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

TOGE concrete screw TSM high Performance

Product description

Material, Dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

TSM concrete screw size	<u> </u>	(5		8			10			12			14	
Nominal embedment		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static load Fire exposure	ds	All size:				sizes	and	all er	nbed	ment	dept	ths			
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR: no performa assessed)	C2 category – seismic (A4 and HCR: no performance		L)	1	1)	ok	1)	1)	ok	1	1)	ok	1	.)	ok

¹⁾ no performance assessed

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 - Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

TOGE concrete screw TSM high Performance	
Intended use	Annex B1
Specification	

Specification of Intended use - continuation

Design:

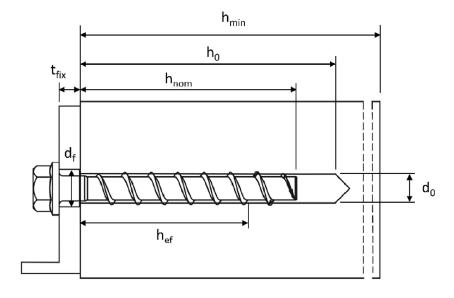
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
 The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters df of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-14, all embedment depths except for applications with filled borehole and not for seismic applications.
- Cleaning of borehole is not necessary, if using a hollow drill.

TOGE concrete screw TSM high Performance

Intended use
Specification continuation


Annex B2

Installation torque (version

Torque impact screw driver

with connection thread)

Table 4: Installation parame	ters									
TSM concrete screw size			(5		8			10	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85
Nominal drill hole diameter	d ₀	[mm]	f	õ		8			10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,	40		8,45			10,45	
Drill hole depth	h₀≥	[mm]	45	60	55	65	75	65	85	95
Clearance hole diameter	d _f ≤	[mm]	8	3		12			14	
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0		20			40	
Torque impost corous driver		[NIma]	Max	ι. torqu	e accord	ding to r	nanufac	turer's	instruct	ions
Torque impact screw driver		[Nm]	16	50		300			400	
TSM concrete screw size				1	.2			1	.4	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{no}	m2 h	n _{om3}	h _{nom1}	h _{nor}	_{m2}	h _{nom3}
Normal embedment depth		[mm]	65	85	5	100	75	100	0	115
Nominal drill hole diameter	d_0	[mm]		1	.2			1	.4	
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14	,50	
Drill hole depth	h₀≥	[mm]	75	95	5	110	85	110	0	125
Clearance hole diameter	d _f ≤	[mm]		1	.6			1	.8	
· · · · · · · · · · · · · · · · · · ·										

60

650

Max. torque according to manufacturer's instructions

TOGE concrete screw TSM high Performance

 $T_{inst} \\$

[Nm]

[Nm]

Intended use Installation parameters

Annex B3

80

650

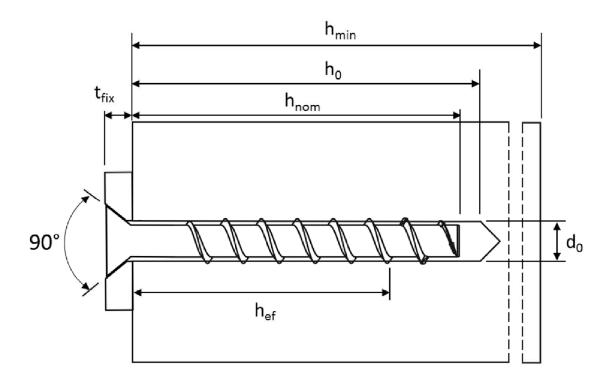
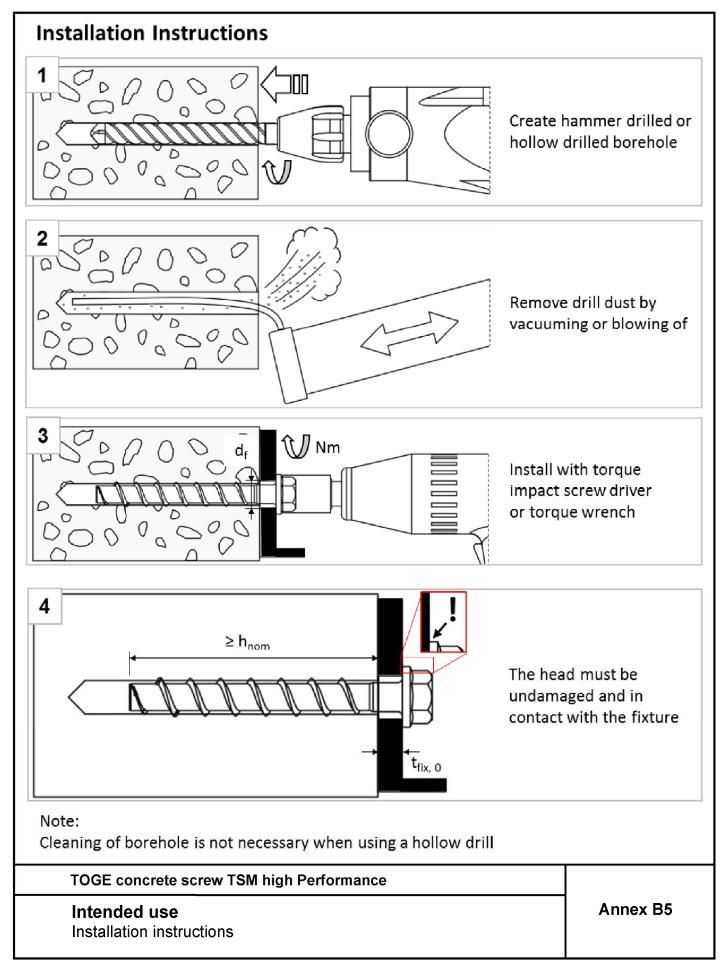
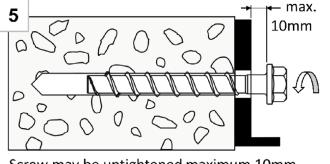

Electronic copy of the ETA by DIBt: ETA-15/0514

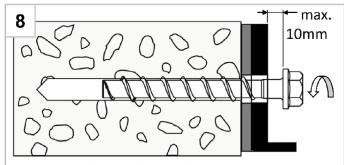
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing


TSM concrete screw	TSM concrete screw size					8			10			
Nominal embedment depth $\frac{h_{nom}}{[mm]}$		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
		[mm]	40	55	45	55	65	55	75	85		
Minimum thickness of member	h _{min}	[mm]	10	100 1		.00 120		100 130		0		
Minimum edge distance	C _{min}	[mm]	40		40	40 50		50				
Minimum spacing	Smin	[mm]	4	0	40	50		50				

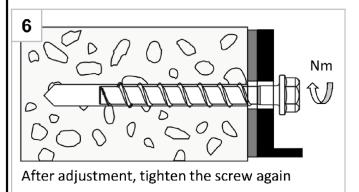
TSM concrete screw	size			12		14				
Nominal embedment	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
Nominal embedment	ueptii	[mm]	65	85	100	75	100	115		
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170		
Minimum edge distance	C _{min}	[mm]		50	70	50	70			
Minimum spacing	S _{min}	[mm]	W	50	70	50	70			

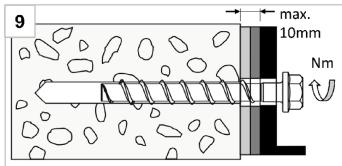
TOGE concrete screw TSM high Performance	
Intended use Minimum thickness of member, minimum edge distance and minimum spacing	Annex B4



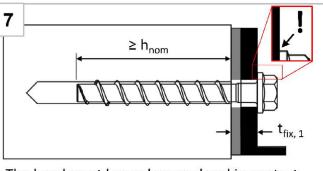

Installation Instructions – Adjustment

1. Adjustment

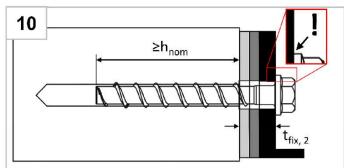



Screw may be untightened maximum 10mm

2. Adjustment



Screw may be untightened maximum 10mm



After adjustment, tighten the screw again

The head must be undamaged and in contact with the fixture

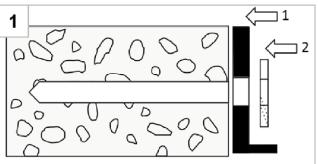
The head must be undamaged and in contact with the fixture

Note:

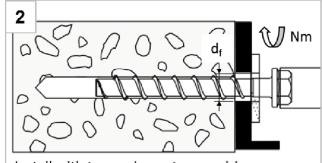
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

TOGE concrete screw TSM high Performance

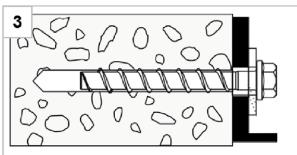
Intended use

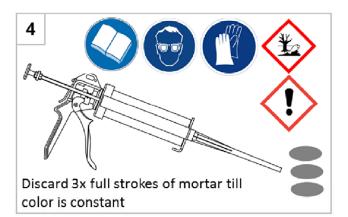

Installation instructions - Adjustment

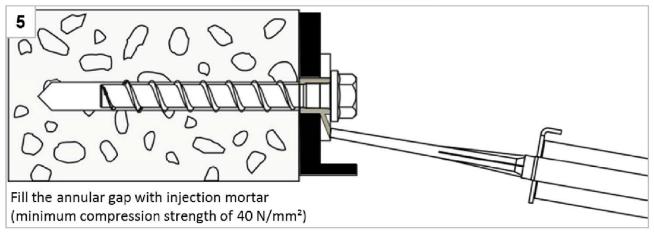
Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

TOGE concrete screw TSM high Performance

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 0. Clia	ıra	cteristic val	ues to	r static	and q	uasi-st	atic loa	ading,	sizes 6	-10		
TSM concret	te s	screw size			(5		8			10	
Nominal emb	ned:	ment denth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
Norminal Citic	,cu			[mm]	40	55	45	55	65	55	75	85
Steel failure	for	tension and	shear	loadin	g							
Characteristic	c te	nsion load	$N_{Rk,s}$	[kN]	14	14,0 27,0 45,						
Partial factor			γ Ms,N	[-]				1,	,5			
Characteristic	ear load	$V^0_{Rk,s}$	[kN]	7,	,0	13	3,5	17,0	22,5	34	l,0	
Partial factor			γ Ms,∨	[-]				1,	25			
Ductility factor			k ₇	[-]		_			,8			
Characteristic	c be	ending load	M ⁰ _{Rk,s}	[Nm]	10),9		26,0			56,0	
Pull-out failu											ı	
Characteristic tension load	3	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾
C20/25		uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,
		C25/30 1,12							12			
Increasing	C30/37	Ψς	[-]	1,22								
factor for N _{Rk}	,p	C40/50	, ,						41			
		C50/60							58			
Concrete fai		<u> </u>									I	
Effective emb	_	· · · · · · · · · · · · · · · · · · ·	h _{ef}	[mm]	31	44	35	43	52	43	60	68
k-factor	H	racked	k _{cr}	[-]	7,7							
	1	ncracked	k _{ucr}	[-]					.,0			
Concrete	⊢ ·	pacing	S _{cr,N}	[mm]					h _{ef}			
cone failure		dge distance	C _{cr,N}	[mm]					x h _{ef}			
Splitting	-	esistance	N ⁰ Rk,sp	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,
failure	H-	pacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210
		dge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105
Factor for pry			k ₈	[-]			1,	,0			2	,0
Installation fa	ctc	or	γinst	[-]				1,	,0			
Concrete ed	<u> </u>										•	
Effective leng			$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68
Nominal oute screw	er d	liameter of	d_{nom}	[mm]		5		8			10	
¹⁾ N ⁰ _{Rk,c} accordir	ng t	o EN 1992-4:20	018									
, , , , , , , , , , , , , , , , , , ,				niah Pe	rforma	nce						
Perfo	Performances Characteristic values for						adina	oizoo 6	: 10	- A	nnex (C1

TSM concret	te sc	 crew size		Ī		12			14			
				h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}		
Nominal emb	edm	nent depth		[mm]	65	85	100	75	100	115		
Steel failure	for t	tension and shea	er loadin	σ					<u> </u>			
Characteristic			N _{Rk,s}	[kN]	67,0 94,0							
Partial factor			γ _{Ms,N}	[-]		/-	1,	.5				
Characteristic	she	 ear load	V ⁰ _{Rk,s}	[kN]	33,5	<u> </u>						
Partial factor			γ _{Ms,V}	[-]	· ·		1,	 25	<u> </u>			
Ductility factor	or		k ₇	[-]			0,	.8				
Characteristic	ber	nding load	M ⁰ _{Rk,s}	[Nm]		113,0			185,0			
Pull-out failu	ıre											
Characteristic		cracked	N _{Rk,p}	[kN]	12,0							
tension load C20/25	l	ıncracked	N _{Rk,p}	[kN]	16,0	$\geq N^{0}_{Rk,c}$ 1)						
C20/23	\top	C25/30			ŕ	1,12						
Increasing		C30/37	Ψ _c	ا , , [1,					
factor for N _{Rk}	ctor for N _{Rk,p} C40/50			[-]			1,	41				
		C50/60				1,58						
Concrete fai	lure	: Splitting failure	, concre	te cone	e failure	and pry	-out fail	ıre				
Effective emb	edm	nent depth	h _{ef}	[mm]	50	50 67 80 58 79 92						
k-factor	cra	icked	k ₁ =k _{cr}	[-]		7,7						
K-Iactoi	un	cracked	k ₁ = k _{ucr}	[-]			11	.,0				
Concrete	spa	acing	S _{cr,N}	[mm]			3 x	h _{ef}				
cone failure	ed	ge distance	C _{cr,N}	[mm]			1,5 :	x h _{ef}				
Splitting	res	sistance	N ⁰ _{Rk,sp}	[kN]	16,0	27,0	35,0	21,5	34,5	43,5		
failure	-	acing	S _{cr,Sp}	[mm]	150	210	240	180	240	280		
		ge distance	C _{cr,Sp}	[[mm]	75	105	120	90	120	140		
Factor for pry	/-out	: failure	k ₈	[-]	1,0	2,	,0	1,0	2,	,0		
Installation fa	ctor		γ inst	[-]			1,	.0				
Concrete ed	ge fa	ailure										
Effective leng	th in	concrete	I _f = h _{ef}	[mm]	50	67	80	58	79	92		
Nominal oute	Nominal outer diameter of screw d _{nom} [mm] 12 14											
¹⁾ N ⁰ _{Rk,c} accordi	ng to	EN 1992-4:2018										
TOGE	cond	crete screw TSM	high Pe	rforma	nce							
Donfor									Annex	. C2		
Perfor	iiid	11003				g, sizes 1						

Table 8: Seismic category C1 – Characteristic load values (type S, type SK, type ST,
type ST-6 ¹⁾ , type P and type I ¹⁾)

TSM concrete screw size		6		8	10		12	14
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}
Normal embedment depth	[mm]	40	55	65	55	85	100	115

Steel failure for tension and shear	Steel failure for tension and shear load (version type S, type SK, type ST, type ST-61), type P, type I1)											
Characteristic load	$N_{Rk,s,eq}$	[kN]	14,0		27,0	45,0		67,0	94,0			
Partial factor	$\gamma_{Ms,eq}$	[-]	1,5									
Characteristic load	$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4			
Partial factor	γ Ms,eq	[-]	1,25									
With filling of the annular gap ²⁾	$lpha_{\sf gap}$	[-]	1,0									
Without filling of the annular gap ³⁾	α_{gap}	[-]	0,5									

Pull-out failure (version type S, type SK, type ST, type ST-6 ¹⁾ , type P, type I ¹⁾)										
Characteristic tension load in cracked concrete C20/25	$N_{Rk,p,eq}$	[kN]	2,0	4,0	12,0	9,0	≥ N ⁰ _{Rk,c} ⁴			

Concrete cone failure (version type	Concrete cone failure (version type S, type SK, type ST, type ST-61), type P, type I1)											
Effective embedment depth	h _{ef}	[mm]	31 44 52 43 68 80 92									
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}									
Spacing	S _{cr,N}	[mm]	3 x h _{ef}									
Installation safety factor	γinst	[-]	1,0									

Concrete pry-out failure (version type S, type SK, type ST, type P)											
Factor for pry-out failure	r pry-out failure k ₈ [-] 1,0 2,0										
Concrete edge failure (version type S, type SK, type ST, type P)											
Effective length in concrete	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92		

Concrete edge failure (version type 3, type 31, type 7)										
Effective length in concrete	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92	
Nominal outer diameter of screw	d_{nom}	[mm]	6	6	8	10	10	12	14	

¹⁾ only tension load

Performances

Seismic category C1 – Characteristic load values

²⁾ With filling of the annular gap according to annex B7, figure 5

³⁾ Without filling of the annular gap according to annex B5

 $^{^{4)}\} N^{0}_{Rk,c}$ according to EN 1992-4:2018

Table 9: Seismic category C2 1) – Characteristic load values with filled annular gap
according to annex B7, figure 5 (type S, type ST, type P)

according to annex B7, figure 5	(type S,	type S	T, type P)							
TSM concrete screw size			8	10	12	14				
Naminal ambadment denth		h_{nom}		h _n	om3					
Nominal embedment depth		[mm]	65	85	100	115				
Steel failure for tension and shear	· load (ve	rsion ty r	oe S, type ST,	type P)						
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0	67,0	94,0				
Partial factor	γMs,eq	eq [-] 1,5								
Characteristic load	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7				
Partial factor	γMs,eq	[-]	1,25							
With filling of the annular gap	$lpha_{\sf gap}$	[-]	1,0							
Pull-out failure (version type S, type ST, type P)										
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5				
Concrete cone failure (version type	S, type ST	, type P)							
Effective embedment depth	h _{ef}	[mm]	52	68	80	92				
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}					
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}					
Installation safety factor	γinst	[-]		1	,0					
Concrete pry-out failure (version ty	pe S, type	ST, type	e P)							
Factor for pry-out failure	k ₈	[-]	1,0		2,0					
Concrete edge failure (version type	S, type ST	, type P)							
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92				
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14				

TOGE concrete screw TSM high Performance

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

¹⁾ A4 and HCR not suitable

TSM concrete screw size			8	10	12	14		
Name in all and a dual and dende		h _{nom}		hn	nom3			
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension and shea	ar load (v	ersion t	ype S, type S1	, type P)				
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0	67,0	94,0		
Partial factor	γ _{Ms,eq}	[-]	1,5					
Characteristic load	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3		
Partial factor	γ Ms,eq	[-]		1,	,25			
Without filling of the annular gap	$lpha_{\sf gap}$	[-]		C),5			
Pull-out failure (version type S, type	e ST, type	P)						
Characteristic load in	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5		
cracked concrete	i ₹ĸĸ,p,eq	[[(,	Z, ¬	J, 1		10,5		
Steel failure for tension and shea	ar load (v	ersion t	ype SK)					
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0				
Partial factor	γ _{Ms,eq}	[-]	1,	.5	_			
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7	no performa	nce assessed		
Partial factor	γMs,eq	[-]	1,	25				
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	0,	.5				
Pull-out failure (version type SK)								
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	no performa	nce assessed		
Concrete cone failure (version ty	pe S, typ	oe SK, t	ype ST, typ	<u></u> е Р)	•			
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}	•		
Spacing	S _{cr,N}	[mm]			ς h _{ef}			
Installation safety factor	γinst	[-]	1,0					

Concrete edge failure (version type S, type SK, type ST, type P)										
Effective length in concrete $I_f = h_{ef}$ [mm] 52 68 80 92										
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14				

¹⁾ A4 and HCR not suitable

Performances

Seismic category C2 - Characteristic load values without filled annular gap

TSM concret	e scre	w size	!	6		8		1	10	ļ	12		14				
h _{nom}			h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal emb	edmen	t depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Steel failure	for ter	ision and	shear	load													
	R30	N _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	,
	R60	N _{Rk,s,fi60}	[kN]	0,	,8		1,7			3,3			5,8			8,2	
	R90	N _{Rk,s,fi90}	[kN]	0,	,6		1,1		Ĺ	2,3			4,2	'		5,9	
	R120	N _{Rk,s,fi120}	[kN]	0,	,4	0,7			1,7			3,4	!		4,8		
	R30	V _{Rk,s,fi30}	[kN]	0,9		2,4			4,4			7,3			10,3	,	
characteristic		V _{Rk,s,fi60}	[kN]	+ -	0,8		1,7		3,3		<u> </u>	5,8		$oxed{igspace}$	8,2		
Resistance	R90	V _{Rk,s,fi90}	[kN]	'	,6	<u> </u>	1,1		<u> </u>		2,3		4,2		<u> </u>	5,9	
	R120	V _{Rk,s,fi120}	[kN]	1	,4	<u> </u>	0,7		1,7		<u> </u>	3,4		<u> </u>	4,8		
	R30	M ⁰ _{Rk,s,fi30}		1	,7	<u> </u>	2,4		<u> </u>	5,9		<u> </u>	12,3		<u> </u>	20,4	
	R60	M ⁰ Rk,s,fi60	_	0,6		<u> </u>	1,8		<u> </u>	4,5		<u> </u>	9,7		<u> </u>	15,9	
	R90	M ⁰ Rk,s,fi90		0,5		<u> </u>	1,2		<u> </u>	3,0		<u> </u>	7,0		 	11,6	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,	,3	<u> </u>	0,9		<u> </u>	2,3		<u> </u>	5,7	'	<u> </u>	9,4	_
Pull-out failu	ire																
Characteristic	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete cor	ne failı	ure															
Characteristic	R30- R90	N ⁰ _{Rk,c,fi}	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Resistance	R120	N ⁰ _{Rk,c,fi}	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Edge distanc	 :e			_	_			_	_	_	_		_	_	<u> </u>		_
R30 bis R120		C _{cr,fi}	[mm]							2	x h _{ef}	f					
In case of fire	attack	from more	than ϵ	one s	side,	the r	minir	num	edg	e dis	tanc	e sh	all be	≥ ≥300)mm		
Spacing																	
R30 bis R120		S _{cr,fi}	[mm]							4	x h _{ef}	f					
Pry-out failure	e																
R30 bis R120		k ₈	[-]			1,	,0			2	,0	1,0	2	2,0	1,0	2	.,0
The anchorag value.	e deptl			sed f	for w	vet co	oncre	ete b	y at			nm (_

Performances

Fire exposure – characteristic values of resistance

TSM concre	ete screw size			6	8				10			
			h _{nom}	h _{nom1}	h _{nom2}	hn	nom1	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{non}
Nominal em	bedment depth		[mm]	40	55	1	15	55	65	55	75	85
	tension load	N	[kN]	0,95	1,9	_	2,4	4,3	5,7	4,3	7,9	9,6
Cracked concrete	displacement	δ_{N0}	[mm]	0,3	0,6	0),6	0,7	0,8	0,6	0,5	0,9
	displacement	δ _{N∞}	[mm]	0,4	0,4	0),6	1,0	0,9	0,4	1,2	1,2
Uncracked	tension load	N	[kN]	1,9	4,3	3	3,6	5,7	7,6	5,7	9,5	11,
concrete	displacement	$\delta_{ m N0}$	[mm]	0,4	0,6),7	0,9	0,5	0,7	1,1	1,0
		δ _{N∞}	[mm]	0,4	0,4	0),6	1,0	0,9	0,4	1,2	1,2
TSM concre	ete screw size				12					14		
Nominal em	hedment denth		h _{nom}	h _{nom1}	h _{nom2}		h_{no}	m3	h_{nom1}	h _{nom}	₂	າ _{nom3}
Nominal embedment depth			[mm]	65	85	\perp	10	-	75	100		115
Cracked concrete	tension load	N	[kN]	5,7	9,4	_	12,		7,6	12,0)	15,1
	displacement	δ_{N0}	[mm]	0,9	0,5	+	1,0		0,5	0,8		0,7
		δ _{N∞}	[mm]	1,0	1,2	_	1,:	2	0,9 1,2			1,0
Uncracked concrete	tension load	N	[kN]	7,6	13,2	- 		10,6	16,9		21,2	
	displacement	$\delta_{ m N0}$	[mm]	1,0	1,1	4	1,2		0,9	1,2		0,8
displacement		$\delta_{N^{\infty}}$	[mm]	1,0	1,2	•		2	0,9	1,2		1,0
able 13: Dis	placements ur	ider sta	atic and	d quasi-	static s	hea	ar loa	ad				
TSM concre	ete screw size			(5			8			10	
Nominal em	Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	hn	om1	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nor}
- TVOITIIII CITI			[mm]	40 55		45 55			65 55		75	85
Cracked	shear load	V	[kN]	3,	8,6			16,2				
and uncracked	displacement	$\delta_{ m V0}$	[mm]	1,	55	2,7				2,7		
concrete	displacement	δν∞	[mm]	3,	.1			4,1			4,3	
TSM concre	ete screw size				12					14		
			h _{nom}	h _{nom1}	h _{nom2}	_	h _{no}	m3	h _{nom1}	h _{nom}		1 _{nom3}
Nominal em	bedment depth		[mm]	65	85		10		75	100		115
Cracked	shear load	V	[kN]		20,0					30,5		
and		δ_{V0}	[mm]	4,0					3,1			
uncracked concrete	displacement $\delta_{V^{\infty}}$		[mm]	6,0					4,7			
TOGE	E concrete scre	w TSM	high P	erforma	ance							

TSM concrete screw size		8	10	12	14	
Naminal ambadmant danth	h _{nom}		hn	om3		
Nominal embedment depth		[mm]	65	85	100	115
Displacements under tension	loads (versio	n type S, t	type ST, type	P)		
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Displacements under shear lo	ads (version t	type S, typ	pe ST, type P	with hole cle	arance)	
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27
Nominal embedment depth					om3	
TSM concrete screw size		h _{nom}	8	10 h _o	12	14
Nominal embedment depth			65	85	100	115
Displacements under tension	loads (versio	n type S, t	type ST, type	e P)		
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16
Displacement DES						
•	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	4,39
•	,	,	<i>'</i>	1,36	2,36	4,39
Displacement ULS	,	,	<i>'</i>	1,36 0,32		-
Displacement ULS Displacements under tension	loads (versio	n type SK)	·	2,36	
Displacement ULS Displacements under tension Displacement DLS Displacement ULS	$\begin{array}{c} \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	n type SK [mm] [mm]	0,66 1,74	0,32 1,36	no performa	
Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacements under shear lo	$\begin{array}{c} \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	n type SK [mm] [mm]	0,66 1,74	0,32 1,36	no performa	
Displacement ULS Displacements under tension Displacement DLS	$\begin{array}{c} \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	m type SK [mm] [mm]	0,66 1,74 pe ST, type P	0,32 1,36 with hole cle	no performa arance)	nce assesse
Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacements under shear lo	$\begin{array}{c} \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{oads (version 1} \\ \delta_{\text{V,eq(DLS)}} \\ \end{array}$	[mm] type S, type [mm] [mm]	0,66 1,74 De ST, type P 4,21 7,13	0,32 1,36 with hole cle 4,71 8,83	no performa arance) 4,42	nce assessed
Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacements under shear lo Displacement DLS Displacement ULS	$\begin{array}{c} \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{oads (version 1} \\ \delta_{\text{V,eq(DLS)}} \\ \end{array}$	[mm] type S, type [mm] [mm]	0,66 1,74 De ST, type P 4,21 7,13	0,32 1,36 with hole cle 4,71 8,83	no performa arance) 4,42	5,60 12,63

1) A4	and	HCR	not	suitable	٩

Performances

Displacements under seismic loads